Dynamic Materialization for Building Personalized Smart Cubes

  • Daniel K. Antwi
  • Herna L. ViktorEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9670)


Selecting the optimal subset of views for materialization provides an effective way to reduce the query evaluation time for real-time Online Analytic Processing (OLAP) queries posed against a data warehouse. However, materializing a large number of views may be counterproductive and may exceed storage thresholds, especially when considering very large data warehouses. Thus, an important concern is to find the best set of views to materialize, in order to guarantee acceptable query response times. It further follows that this set of views may differ, from user to user, based on personal preferences. In addition, the set of queries that a specific user poses also changes over time, which further impacts the view selection process. In this paper, we introduce the personalized Smart Cube algorithm that combines vertical partitioning, partial materialization and dynamic computation to address these issues. In our approach, we partition the search space into fragments and proceed to select the optimal subset of fragments to materialize. We dynamically adapt the set of materialized views that we store, as based on query histories and user interests. The experimental evaluation of our personalized Smart Cube algorithm shows that our work compare favorably with the state-of-the-art. The results indicate that our algorithm materializes a smaller number of views than other techniques, while yielding fast query response times.


Smart data cubes Dynamic cube construction Real-time OLAP Partial materialization Personalization User interests 


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, (VLDB), pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)Google Scholar
  2. 2.
    Aouiche, K., Lemire, D.: Lemire of five probabilistic view-size estimation techniques in OLAP. In: Proceedings of the ACM Tenth International Workshop on Data Warehousing and OLAP, DOLAP, pp. 17–24. ACM, New York (2007)Google Scholar
  3. 3.
    Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization framework for OLAP queries. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP, DOLAP, pp. 9–18. ACM, New York (2005)Google Scholar
  4. 4.
    Bjrklund, T.A., Grimsmo, N., Gehrke, J., Torbjrnsen, Ø.: Inverted indexes vs. bitmap indexes in decision support systems. In: CIKM, pp. 1509–1512. ACM, New York (2009)Google Scholar
  5. 5.
    Boukorca, A., Bellatreche, L., Cuzzocrea, A.: SLEMAS: an approach for selecting materialized views under queryscheduling constraints. In: 20th International Conference on Management of Data, COMAD, Hyderabad, India, pp. 66–73, 17–19 December 2014Google Scholar
  6. 6.
    Boukorca, A., Bellatreche, L., Senouci, S.B., Faget, Z.: Coupling materialized view selection to multi query optimization: hyper graph approach. IJDWM 11(2), 62–84 (2015)Google Scholar
  7. 7.
    Cabanac, G., Chevalier, M., Ravat, F., Teste, O.: An annotation management system for multidimensional databases. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 89–98. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    da Silva Firmino, A., Mateus, R.C., Times, V.C., Cabral, L.F., Siqueira, T.L.L., Ciferri, R.R., de Aguiar Ciferri, C.D.: A novel method for selecting and materializing views based on OLAP signatures and grasp. JIDM 2(3), 479–494 (2011)Google Scholar
  9. 9.
    Dehne, F., Lawrence, M., Rau-Chaplin, A.: Cooperative caching for grid-enabled OLAP. Int. J. Grid Util. Comput. 1(2), 169–181 (2009)CrossRefGoogle Scholar
  10. 10.
    Golfarelli, M., Maio, D., Rizzi, S.: Applying vertical fragmentation techniques in logical design of multidimensional databases. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 11–23. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for OLAP. In: Proceedings of the Thirteenth International Conference on Data Engineering, ICDE, pp. 208–219. IEEE Computer Society, Washington DC (1997)Google Scholar
  12. 12.
    Hanusse, N., Maabout, S., Tofan, R.: A view selection algorithm with performance guarantee. In: Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, EDBT, pp. 946–957. ACM, New York (2009)Google Scholar
  13. 13.
    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD, pp. 205–216. ACM, New york (1996)Google Scholar
  14. 14.
    Ioannidis, Y., Koutrika, G.: Personalized systems: models and methods from an ir and db perspective. In: Proceedings of the 31st International Conference on Very Large Databases, VLDB, p. 1365. VLDB Endowment (2005)Google Scholar
  15. 15.
    Karloff, H., Mihail, M.: On the complexity of the view-selection problem. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS, pp. 167–173. ACM, New York (1999)Google Scholar
  16. 16.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. Wiley, New York (2002)Google Scholar
  17. 17.
    Kotidis, Y., Roussopoulos, N.: Dynamat: a dynamic view management system for data warehouses. SIGMOD Rec. 28(2), 371–382 (1999)CrossRefGoogle Scholar
  18. 18.
    Li, X., Han, J., Gonzalez, H.: High-dimensional OLAP: a minimal cubing approach. In: Proceedings of the Thirtieth International Conference on Very large databases - vol. 30, VLDB, pp. 528–539. VLDB Endowment (2004)Google Scholar
  19. 19.
    Lijuan, Z., Xuebin, G., Linshuang, W., Qian, S.: Research on materialized view selection algorithm in data warehouse. Comput. Sci. Technol. Appl. IFCSTA 2, 326–329 (2009)Google Scholar
  20. 20.
    Nadeau, T.P., Teorey, T.J.: Achieving scalability in OLAP materialized view selection. In: Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP, DOLAP, pp. 28–34. ACM, New York (2002)Google Scholar
  21. 21.
    Ravat, F., Teste, O.: Personalization and OLAP databases. In: Kozielski, S., Wrembel, R. (eds.) New Trends in Data Warehousing and Data Analysis. Annals of Information Systems, vol. 3, pp. 1–22. Springer, US (2009)Google Scholar
  22. 22.
    Shukla, A., Deshpande, P., Naughton, J.F.: Materialized view selection for multidimensional datasets. In: Proceedings of the 24th International Conference on Very Large Data Bases, VLDB, pp. 488–499. Morgan Kaufmann Publishers Inc., San Francisco (1998)Google Scholar
  23. 23.
    Talebi, Z.A., Chirkova, R., Fathi, Y., Stallmann, M.: Exact and inexact methods for selecting views and indexes for OLAP performance improvement. In: Proceedings of the 11th International Conference on ExtendingDatabase Technology: Advances in Database Technology, EDBT, pp. 311–322. ACM, New York (2008)Google Scholar
  24. 24.
    Thalhammer, T., Schrefl, M.: Realizing active data warehouses with off-the-shelf database technology. Softw. Pract. Exper. 32(12), 1193–1222 (2002)CrossRefzbMATHGoogle Scholar
  25. 25.
    Thalhammer, T., Schrefl, M., Mohania, M.: Active data warehouses: complementing OLAP with active rules. Data Knowl. Eng. 39, 241–269 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Theodoratos, D., Xu, W.: Constructing search spaces for materialized view selection. In: Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, DOLAP, pp. 112–121. ACM, New York (2004)Google Scholar
  27. 27.
    TPC. Transaction processing performance council (1.1.0), April 2013.
  28. 28.
    Vijay Kumar, T.V., Haider, M., Kumar, S.: A view recommendation greedy algorithm for materialized views selection. In: Dua, S., Sahni, S., Goyal, D.P. (eds.) ICISTM 2011. CCIS, vol. 141, pp. 61–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31(1), 1–38 (2006)CrossRefGoogle Scholar
  30. 30.
    Zhang, D., Tan, S., Yang, D., Tang, S., Ma, X., Jiang, L.: Dynamic construction of user defined virtual cubes. In: Etzion, O., Kuflik, T., Motro, A. (eds.) NGITS 2006. LNCS, vol. 4032, pp. 287–299. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Zhou, L., He, X., Li, K.: An improved approach for materialized view selection based on genetic algorithm. J. Comput. 7(7), 1591–1598 (2012)Google Scholar
  32. 32.
    Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 1–56 (2006)CrossRefGoogle Scholar
  33. 33.
    Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache compression. In: Proceedings of the 22nd International Conference on Data Engineering, ICDE, p. 59 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada

Personalised recommendations