Skip to main content

Reversed Field Pinch

  • Chapter
  • First Online:
  • 2040 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 92))

Abstract

Section 16.1 explains reversed field pinch (RFP) configuration and Sect. 16.2 describes Taylor relaxation theory of RFP by use of magnetic helicity (16.1). The relaxation process of RFP is driven by helical non-linear driven reconnection and axisymmetric non-linear reconnection (refer to Fig. 16.4 in Sect. 16.3). Energy confinement time of RFP plasma (with or without pulsed parallel current drive (PPCD)) is described in Sect. 16.4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.C. Robinson, R.E. King, Plasma Phys. Control. Nucl. Fusion Res. 1 (1969) (Conference Proceedings, Novosibirsk in 1968, IAEA, Vienna)

    Google Scholar 

  2. H.A.B. Bodin, A.A. Newton, Nucl. Fusion 20, 1255 (1980)

    Article  ADS  Google Scholar 

  3. H.A.B. Bodin, Plasma Phys. Control. Fusion 29, 1297 (1987)

    Article  ADS  Google Scholar 

  4. MST Team, Plasma Phys. Control. Nucl. Fusion Res. 2, 519 (1991) (Conference Proceedings, Washington D.C. in 1990, IAEA, Vienna ); TPE-1RM20 Team, in 19th Fusion Energy Conference 2, 95 (1997) (Conference Proceedings, Montreal in 1996, IAEA, Vienna)

    Google Scholar 

  5. EX4/3(RFX), EX4/4(TPE-RX), in 17th Fusion Energy Conference 1(367), 375 (1999) (Conference Proceedings, Yokohama in 1998, IAEA, Vienna)

    Google Scholar 

  6. J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974)

    Article  ADS  Google Scholar 

  7. T.H. Jensen, M.S. Chu, Phys. Fluids 27, 2881 (1984)

    Article  ADS  Google Scholar 

  8. V.D. Shafranov, E.I. Yurchenko, Sov. Phys. JETP 26, 682 (1968)

    ADS  Google Scholar 

  9. D.A. Backer, M.D. Bausman, C.J. Buchenbauer, L.C. Burkhardt, G. Chandler, J.N. Dimorco et al., Plasma Phys. Control. Nucl. Fusion Res. 1, 587 (1983) (Conference Proceedings, Bartimore 1982, IAEA, Vienna)

    Google Scholar 

  10. K. Miyamoto, Plasma Phys. Control. Fusion 30, 1493 (1988)

    Article  ADS  Google Scholar 

  11. K. Kusano, T. Sato, Nucl. Fusion 27, 821 (1987)

    Article  Google Scholar 

  12. D.D. Schnack, E.J. Caramana, R.A. Nebel, Phys. Fluids 28, 321 (1985)

    Article  ADS  Google Scholar 

  13. S.C. Prager, J. Adney, A. Almagri, J. Anderson, A. Blair et al., in 20th IAEA Fusion Energy Conference (Vilamoura, 2004) OV/4-2

    Google Scholar 

  14. A.R. Jacobson, R.W. Moses, Phys. Rev. A 29, 3335 (1984)

    Article  ADS  Google Scholar 

  15. B.E. Chapman, J.K. Anderson, T.M. Biewer, D.L. Brower, S. Castillo et al., Phys. Rev. Lett. 87, 205001 (2001); B.E. Chapman, A.F. Almagri, J.K. Anderson, T.M. Biewer, P.K. Chattopadhyay et al., Phys. Plasmas 9, 2061 (2002)

    Google Scholar 

  16. K.A. Werley, J.N. Dimarco, R.A. Krakowski, C.G. Bathke, Nucl. Fusion 36, 629 (1996)

    Article  ADS  Google Scholar 

  17. M. Valisa, F. Auriemma, A. Canton, L. Carraro, R. Lorenzini et al., in 20th IAEA Fusion Energy Conference (Vilamoura, 2004) EX/P4-13

    Google Scholar 

  18. J.S. Sarff, S.A. Hokin, H. Ji, S.C. Prager, C.R. Sovinec, Phys. Rev. Lett. 72, 3670 (1994)

    Article  ADS  Google Scholar 

  19. J.S. Sarff, N.E. Lanier, S.C. Prager, M.R. Stoneking, Phys. Rev. Lett. 78, 62 (1997)

    Article  ADS  Google Scholar 

  20. J.S. Sarff, A.F. Almagri, J.K. Anderson, T.M. Biewer, D.L. Brower et al., in 19th IAEA Fusion Energy Conference (Lyon, 2002) OV/4-3

    Google Scholar 

  21. R. Bartiromo, P. Martin, S. Martini, T. Bolzonella, A. Canton, P. Innocente, Phys. Rev. Lett. 82, 1462 (1999)

    Article  ADS  Google Scholar 

  22. Y. Yagi, H. Koguchi, Y. Hirano, T. Shimada, H. Sakakita, S. Sekine, Phys. Plasmas 10, 2925 (2003)

    Article  ADS  Google Scholar 

  23. Y. Yagi, H. Koguchi, Y. Hirano, H. Sakakita, L. Frassinetti, Nucl. Fusion 45, 138 (2005)

    Article  ADS  Google Scholar 

  24. M.K. Bevir, J.W. Gray, in Proceedings of Reversed Field Pinch Theory Workshop (LANL Los Alamos, 1981) Report No-8944-C, p. 176; M.K. Bevir, C.G. Gimblett, Phys. Fluids 28, 1826 (1985)

    Google Scholar 

  25. K.F. Schoenberg, J.C. Ingraham, C.P. Munson, P.G. Weber et al., Phys. Fluids 31, 2285 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenro Miyamoto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyamoto, K. (2016). Reversed Field Pinch. In: Plasma Physics for Controlled Fusion. Springer Series on Atomic, Optical, and Plasma Physics, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49781-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49781-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49780-7

  • Online ISBN: 978-3-662-49781-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics