Skip to main content

Mikro-Nano-Integration

  • Chapter
  • First Online:
Mikrosystemtechnik

Part of the book series: Technik im Fokus ((TECHNIK))

  • 5567 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 14.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 19.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. G. Schmid, M. Decker, H. Ernst, H. Fuchs, W. Grünwald, A. Grunwald, H. Hofmann, M. Mayor, W. Rathgeber, U. Simon, D. Wyrwa, Small dimensions and material properties – a definition of nanotechnology Graue Reihe, Bd. 35 (Europäische Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen, Bad Neuenahr-Ahrweiler, 2003)

    Google Scholar 

  2. K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003)

    Article  Google Scholar 

  3. N.C. Seeman, Nanotechnology and the double helix. Scientific American 290, No. 6(Juni), 64–75 (2004)

    Article  Google Scholar 

  4. T. Gerling, K.F. Wagenbauer, A.M. Neuner, H. Dietz, Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015)

    Article  Google Scholar 

  5. F. Greiner, H.F. Schlaak, G. Tschulena, W. Korb, Mikro-Nano-Integration – Einsatz von Nanotechnologien in der Mikrosystemtechnik Schriftenreihe der Aktionslinie Hessen-Nanotech des Hessischen Ministeriums für Wirtschaft, Verkehr und Landesentwicklung, Bd. 13 (Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung, Wiesbaden, 2011)

    Google Scholar 

  6. C. Raab, M. Simkó, U. Fiedeler, M. Nentwich, A. Gazsó, Herstellungsverfahren von Nanopartikeln und Nanomaterialien 2008). NanoTrust Dossier Nr. 006. http://epub.oeaw.ac.at/ita/nanotrust-dossiers/dossier006.pdf, Zugegriffen: 27. Mai 2016

    Google Scholar 

  7. D.L. Leslie-Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chemistry of Materials 8, 1770–1783 (1996)

    Article  Google Scholar 

  8. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  9. L. Brand, M. Gierlings, A. Hoffknecht, V. Wagner, A. Zweck, Kohlenstoff-Nanoröhren: Potenziale einer neuen Materialklasse für Deutschland, Zukünftige Technologien, Bd. 79 (VDI Technologiezentrum, Düsseldorf, 2009)

    Google Scholar 

  10. MarketsandMarkets, Carbon Nanotubes Market – Global Forecasts to 2020, Report Code: CH 3951, Dezember 2015. http://www.marketsandmarkets.com/Market-Reports/carbon-nanotubes-139.html, Zugegriffen: 27. Mai 2016

  11. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metal as a form of nanotechnology. Chemical Reviews 105, 1103–1169 (2005)

    Article  Google Scholar 

  12. W. Thomson, On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron, Proceedings of the Royal Society of London 8, (1856–1857), S. 546–550

    Google Scholar 

  13. R. Slatter, Magnetic sensors on Mars – a German contribution to the “Curiosity” mission Conference on Innovative Small Drives and Micro-Motor-Systems, Nürnberg. 2013), S. 147–151

    Google Scholar 

  14. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B 39, 4828–4830 (1989)

    Article  Google Scholar 

  15. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen VanDau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Physical Review Letters 61, 2472–2475 (1988)

    Article  Google Scholar 

  16. M. Jullière, Tunneling between ferromagnetic films. Physics Letters A 54, 225–226 (1975)

    Article  Google Scholar 

  17. J.H. van Santen, G.H. Jonker, Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure. Physica 16, 599–600 (1950)

    Article  Google Scholar 

  18. A. Hatch, A.E. Kamkolz, G. Holman, P. Yager, K.F. Böhringer, A ferrofluidic magnetic micropump. Journal of Microelectromechanical Systems 10, 215–221 (2001)

    Article  Google Scholar 

  19. M.I. Kilani, A.T. Al Halhouli, S. Büttgenbach, Shear stress analysis in a ferrofluidic magnetic micropump. Nanoscale and Microscale Thermophysical Engineering 15, 1–15 (2011)

    Article  Google Scholar 

  20. A.T. Al Halhouli, M.I. Kilani, A. Waldschik, A. Phataralaoha, S. Büttgenbach, Development and testing of a synchronous micropump based on electroplated coils and microfabricated polymer magnets. Journal of Micromechanics and Microengineering 22, 065027 (2012). (8 Seiten)

    Article  Google Scholar 

  21. S. Büttgenbach, Electromagnetic micromotors – design, fabrication and applications. Micromachines 5, 938 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Büttgenbach, S. (2016). Mikro-Nano-Integration. In: Mikrosystemtechnik. Technik im Fokus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49773-9_11

Download citation

Publish with us

Policies and ethics