Skip to main content

Disorders of Purine and Pyrimidine Metabolism

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Inborn errors of purine metabolism comprise defects or superactivities of purine nucleotide synthesis and interconversions: phosphoribosyl pyrophosphate synthetase (PRS) superactivity and deficiency, adenylosuccinase (ADSL) deficiency, AICA-ribosiduria caused by ATIC deficiency; purine catabolism: the deficiencies of muscle AMP deaminase (AMPD, also termed myoadenylate deaminase), adenylate kinase (AK), adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and xanthine oxidase (XO); purine salvage: the deficiencies of hypoxanthine-guanine phosphoribosyltransferase (HPRT), adenine phosphoribosyltransferase (APRT) and adenosine kinase (ADK). The deficiency of deoxyguanosine kinase (DGUOK) causes mitochondrial DNA depletion. Deficiency of thiopurine S-methyltransferase (TPMT) results in less efficient methylation and hence in enhanced toxicity of pharmacologic thiopurine analogs. Deficiency of inosine triphosphate pyrophosphatase (ITPase) also increases the toxicity of thiopurines. With the exception of the deficiencies of muscle AMPD and TPMT, all these inborn errors are very rare. Inborn errors of pyrimidine metabolism comprise defects of: pyrimidine synthesis: CAD, UMP synthase deficiency and Miller syndrome; pyrimidine catabolism: deficiencies of dihydropyrimidine dehydrogenase (DPD) dihydropyrimidinase (DHP), ureidopropionase, thymidine phosphorylase (a mitochondrial disorder), pyrimidine 5‘-nucleotidase and cytidine deaminase, and superactivity of cytosolic 5‘-nucleotidase; pyrimidine salvage: thymidine kinase 2 deficiency (a mitochondrial disease).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balasubramaniam S, Duley JA, Christodoulou J (2014) Inborn errors of purine metabolism: clinical update and therapies. J Inherit Metab Dis 37:669–686

    Google Scholar 

  2. Balasubramaniam S, Duley JA, Christodoulou J (2014) Inborn errors of pyrimidine metabolism: clinical update and therapy. J Inherit Metab Dis 37:687–698

    Google Scholar 

  3. Sperling O, Boer P, Persky-Brosh S et al. (1972) Altered kinetic property of erythrocyte phosphoribosylpyrophosphate synthetase in excessive purine production. Rev Eur Etud Clin Biol 17:703–706

    Google Scholar 

  4. Becker MA, Puig JG, Mateos FA et al. (1988) Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med 85:383–390

    Google Scholar 

  5. Becker MA (2001) Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. Progr Nucleic Acid Res Mol Biol 69:115–148

    Google Scholar 

  6. de Brouwer APM, van Bokhoven H, Nabuurs SB et al. (2010) PRPS1 Mutations: Four distinct syndromes and potential treatment. Am J Hum Genet 86:506–518

    Google Scholar 

  7. Kranen S, Keough D, Gordon RB, Emmerson BT (1985) Xanthine-containing calculi during allopurinol therapy. J Urol 133:658–659

    Google Scholar 

  8. Mittal R, Patel K, Mittal J et al. (2015) Association of PRPS1 Mutations with Disease Phenotypes. Disease Markers doi:10.1155/2015/127013

    Google Scholar 

  9. Synofzik M, Müller vom Hagen J, Haack TB et al. (2014) X-linked Charcot-Marie-Tooth disease, Arts syndrome, and prelingual non-syndromic deafness form a disease continuum: evidence from a family with a novel PRPS1 mutation. Orphanet J Rare Dis 9:24–31

    Google Scholar 

  10. Jaeken J, Van den Berghe G (1984) An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet 2:1058–1061

    Google Scholar 

  11. Jaeken J, Wadman SK, Duran M et al. (1988) Adenylosuccinase deficiency: an inborn error of purine nucleotide synthesis. Eur J Pediatr 148:126–131

    Google Scholar 

  12. Van den Bergh FAJTM, Bosschaart AN, Hageman G et al. (1998) Adenylosuccinase deficiency with neonatal onset severe epileptic seizures and sudden death. Neuropediatrics 29:51–53

    Google Scholar 

  13. Mouchegh K, Zikanova M, Hoffmann GF et al. (2007) Lethal fetal and early postnatal presentation of adenylosuccinate lyase deficiency: observation of 6 patients in 4 families. J Pediatr 150:57–61

    Google Scholar 

  14. Mierzewska H, Schmidt-Sidor B, Jurkiewicz E et al. (2009) Severe encephalopathy with brain atrophy and hypomyelination due to adenylosuccinate lyase deficiency – MRI, clinical, biochemical and neuropathological findings of Polish patients. Folia Neuropathol 4:314–320

    Google Scholar 

  15. Jurecka A, Zikanova M, Tylki-Szymanska A et al. (2008) Clinical, biochemical and molecular findings in seven Polish patients with adenylosucinate lyase deficiency. Mol Gen Metab 94:435–442

    Google Scholar 

  16. Spiegel EK, Colman RF, Patterson D (2006) Adenylosuccinate lyase deficiency. Mol Genet Metab 89:19–31

    Google Scholar 

  17. Zulfiqar M, Lin DDM, Van der Graaf M et al. (2013) Novel proton MR spectroscopy findings in adenylosuccinate lyase deficiency. J Magn Reson Imaging 37:974–980

    Google Scholar 

  18. Laikind PK, Seegmiller JE, Gruber HE (1986) Detection of 5’-phosphoribosyl-4-(N-succinylcarboxamide)-5-aminoimidazole in urine by use of the Bratton-Marshall reaction: identification of patients deficient in adenylosuccinate lyase activity. Anal Biochem 156:81–90

    Google Scholar 

  19. Ito T, van Kuilenburg ABP, Bootsma AH et al. (2000) Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tandem mass spectrometry of liquid urine or urine-soaked filter paper strips. Clin Chem 46:445–452

    Google Scholar 

  20. Hartmann S, Okun JG, Schmidt C et al. (2006) Comprehensive detection of disorders of purine and pyrimidine metabolism by HPLC with electrospray ionization tandem mass spectrometry. Clin Chem 52:1127–1137

    Google Scholar 

  21. Van Werkhoven MA, Duley JA, McGown I et al. (2013) Early diagnosis of adenylosuccinate lyase deficiency using a high-throughput screening method and a trial of oral S-adenosyl-L-methionine as a treatment method. Dev Med Child Neurol 55:1060–1064

    Google Scholar 

  22. Marie S, Flipsen JWAM, Duran M et al. (2000) Prenatal diagnosis in adenylosuccinate lyase deficiency. Prenat Diagn 20:33–36

    Google Scholar 

  23. Jurecka A, Tylki-Szymanska A, Zikanova M et al. (2008) D-Ribose therapy in four Polish patients with adenylosuccinate lyase deficiency: absence of positive effect. J Inherit Metab Dis 31 Suppl 2:S329–332

    Google Scholar 

  24. Jurecka A, Opoka-Winiarska V, Rokicki D, Tylki-Szymanska A (2012) Neurologic presentation, diagnostics, and therapeutic insights in a severe case of adenylosuccinate lyase deficiency. J Child Neurol 27:645–649

    Google Scholar 

  25. Marie S, Heron B, Bitoun P et al. (2004) AICA-Ribosiduria: a novel, neurologically devastating inborn error of purine biosynthesis caused by mutation of ATIC. Am J Hum Genet 74:1276–1281

    Google Scholar 

  26. Marie S, Ceballos-Picot I, Deloriere E, Imbard A, Benoist JF, Dewulf J, Vincent MF, Rio M (2015) A new case of AICA-ribosiduria. JIMD 38:S231

    Google Scholar 

  27. Fishbein WN, Armbrustmacher VW, Griffin JL (1978) Myoadenylate deaminase deficiency: a new disease of muscle. Science 200:545–548

    Google Scholar 

  28. Shumate JB, Katnik R, Ruiz M et al. (1979) Myoadenylate deaminase deficiency. Muscle Nerve 2:213–216

    Google Scholar 

  29. Mercelis R, Martin JJ, de Barsy T, Van den Berghe G (1987) Myoadenylate deaminase deficiency: absence of correlation with exercise intolerance in 452 muscle biopsies. J Neurol 234:385–389

    Google Scholar 

  30. Van den Berghe G, Bontemps F, Vincent MF, Van den Bergh F (1992) The purine nucleotide cycle and its molecular defects. Progr Neurobiol 39:547–561

    Google Scholar 

  31. Hayes LD, Houston FE, Baker JS (2013) Genetic predictors of adenosine monophosphate deaminase deficiency. J Sports Med Doping Stud 3:124–127

    Google Scholar 

  32. Morisaki T, Gross M, Morisaki H et al. (1992) Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci USA 89:6457–6461

    Google Scholar 

  33. Norman B, Glenmark B, Jansson E (1995) Muscle AMP deaminase deficiency in 2% of a healthy population. Muscle Nerve 18:239–241

    Google Scholar 

  34. Sabina RL, Fishbein WN, Pezeshkpour G et al. (1992) Molecular analysis of the myoadenylate deaminase deficiencies. Neurology 42:170–179

    Google Scholar 

  35. Zöllner N, Reiter S, Gross M et al. (1986) Myoadenylate deaminase deficiency: successful symptomatic therapy by high dose oral administration of ribose. Klin Wochenschr 64:1281–1290

    Google Scholar 

  36. Akizu N, Cantagrel V, Schroth J et al. (2013) AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 154:505–517

    Google Scholar 

  37. Novarino G, Fenstermaker AG, Zaki MS et al. (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science 343:506–511

    Google Scholar 

  38. Ogasawara N, Goto H, Yamada Y et al. (1987) Deficiency of AMP deaminase in erythrocytes. Hum Genet 75:15–18

    Google Scholar 

  39. Hershfield MS, Arredondo-Vega FX, Santisteban I (1997) Clinical expression, genetics and therapy of adenosine deaminase (ADA) deficiency. J Inher Metab Dis 20:179–185

    Google Scholar 

  40. Hershfield M (2014) Adenosine deaminase deficiency. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews. http://www.ncbi.nlm.nih.gov/books/NBK1483/. Last view: 29.04.2016

  41. Bollinger ME, Arredondo-Vega FX, Santisteban I et al. (1996) Brief report: hepatic dysfunction as a complication of adenosine deaminase deficiency. N Engl J Med 334:1367–1371

    Google Scholar 

  42. Hirschhorn R, Yang DR, Puck JM et al. (1996). Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat Genet 13:290–295

    Google Scholar 

  43. Gaspar HB, Aiuti A, Porta F et al. (2009) How I treat ADA deficiency. Blood 114:3524–3532

    Google Scholar 

  44. Hershfield MS (1995) PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin Immunol Immunopathol 76:S228–S232

    Google Scholar 

  45. Booth C, Gaspar HB (2009) Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biol Targets Therapy 3:349–358

    Google Scholar 

  46. Blaese RM, Culver KW, Miller AD et al. (1995) T-lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270:475–480

    Google Scholar 

  47. Gaspar HB (2012) Gene therapy for ADA-SCID: defining the factors for successful outcome. Blood 120:3628–3629

    Google Scholar 

  48. Candotti F, Shaw KL, Muul L et al. (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Bood 120:3635–3646

    Google Scholar 

  49. Carbonaro DA, Xiangyang J, Xinghao W et al. (2012) Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme replacement therapy and cytoreduction. Bood 120:3677–3686

    Google Scholar 

  50. Zhou Q, Yang D, Ombrello AK et al. (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920

    Google Scholar 

  51. Navon Elkan P, Pierce SB, Segel R et al. (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931

    Google Scholar 

  52. Valentine WN, Paglia DE, Tartaglia AP, Gilsanz F (1977) Hereditary hemolytic anemia with increased red cell adenosine deaminase (45- to 70-fold) and decreased adenosine triphosphate. Science 195:783–785

    Google Scholar 

  53. Fargo JH, Kratz CP, Giri N et al. (2013) Erythrocyte adenosine deaminase: diagnostic value for Diamond-Blackfan anaemia. Br J Haematol 160:547–554

    Google Scholar 

  54. Markert ML (1991) Purine nucleoside phosphorylase deficiency. Immunodefic Rev 3:45–81

    Google Scholar 

  55. Markert ML, Finkel BD, McLaughlin TM et al. (1997) Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat 9:118–121

    Google Scholar 

  56. Carpenter PA, Ziegler JB, Vowels MR (1996) Late diagnosis and correction of purine nucleoside phosphorylase deficiency with allogeneic bone marrow transplantation. Bone Marrow Transplant 17:121–124

    Google Scholar 

  57. Baguette C, Vermylen C, Brichard B et al. (2002) Persistent developmental delay despite successful bone marrow transplantation for purine nucleoside phosphorylase deficiency. J Pediatr Hematol Oncol 24:69–71

    Google Scholar 

  58. Delicou S, Kitra-Roussou V, Peristeri J (2007) Successful HLA-identical hematopoietic stem cell transplantation in a patient with purine nucleoside phosphorylase deficiency. Pediatr Transplant 11:799–803

    Google Scholar 

  59. Ichida K, Amaya Y, Kamatani N et al. (1997) Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J Clin Invest 99:2391–2397

    Google Scholar 

  60. Yamamoto T, Moriwaki Y, Takahashi S et al. (2003) Identification of a new point mutation in the human molybdenum cofactor sulferase gene that is responsible for xanthinuria type II. Metabolism 52:1501–1504

    Google Scholar 

  61. Lesch M, Nyhan WL (1964) A familial disorder of uric acid metabolism and central nervous system dysfuntion. Am J Med 36:561–570

    Google Scholar 

  62. Jinnah HA, Vissser JE, Harris JC et al. (2006) Delineation of the motor disorder of Lesch-Nyhan disease. Brain 129:1201–1217

    Google Scholar 

  63. Jinnah HA, Ceballos-Picot I, Torres RJ et al. (2010) Lesch-Nyhan Disease International Study Group. Attenuated variants of Lesch-Nyhan disease. Brain 133:671–689

    Google Scholar 

  64. Ernst M, Zametkin AJ, Matochik JA et al. (1996) Presynaptic dopaminergic deficits in Lesch-Nyhan disease. N Engl J Med 334:1568–1572

    Google Scholar 

  65. Guibinga GH, Hsu S, Friedmann T (2010) Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol Ther 18:54–62

    Google Scholar 

  66. Nyhan WL, O’Neill JP, Harris JC, Jinnah HA (2014) Lesch-Nyhan syndrome. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews. http://www.ncbi.nlm.nih.gov/books/NBK1149/. Last view: 29.04.2016

  67. Jinnah HA, De Gregorio L, Harris JC et al. (2000) The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mut Res 463:309–326

    Google Scholar 

  68. Alford RL, Redman JB, O’Brien WE, Caskey CT (1995) Lesch-Nyhan syndrome: carrier and prenatal diagnosis. Prenat Diagn 15:329–338

    Google Scholar 

  69. Kaufman JM, Greene ML, Seegmiller JE (1968) Urine uric acid to creatinine ratio – a screening test for inherited disorders of purine metabolism. Phosphoribosyl-transferase (PRT) deficiency in X-linked cerebral palsy and in a variant of gout. J Pediatr 73:583–592

    Google Scholar 

  70. Seegmiller JE, Rosenbloom FM, Kelley WN (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155:1682–1684

    Google Scholar 

  71. Page T, Bakay B, Nissinen E, Nyhan WL (1981) Hypoxanthine-guanine phosphoribosyltransferase variants: correlation of clinical phenotype with enzyme activity. J Inher Metab Dis 4:203–206

    Google Scholar 

  72. Watts RWE, McKeran RO, Brown E et al. (1974) Clinical and biochemical studies on treatment of Lesch-Nyhan syndrome. Arch Dis Child 49:693–702

    Google Scholar 

  73. Nyhan WL, Parkman R, Page T et al. (1986) Bone marrow transplantation in Lesch-Nyhan disease. Adv Exp Med Biol 195A:167–170

    Google Scholar 

  74. Taira T, Kobayashi T, Hori T (2003) Disappearance of self-mutilating behavior in a patient with Lesch-Nyhan syndrome after bilateral chronic stimulation of the globus pallidus internus. Case report. J Neurosurg 98:414–416

    Google Scholar 

  75. Chen BC, Balasubramaniam S, McGown IN et al. (2014) Treatment of Lesch-Nyhan disease with S-adenosylmethionine: Experience with five young Malaysians, including a girl. Brain Dev 36:593–600

    Google Scholar 

  76. Dolcetta D, Parmigiani P, Salmaso L et al. (2013) Quantitative evaluation of the clinical effects of S-adenosylmethionine on mood and behavior in Lesch-Nyhan patients. Nucleosides Nucleotides Nucleic Acids 32:174–188

    Google Scholar 

  77. Harambat J, Bollée G, Daudon M et al. (2012) Adenine phosphoribosyltransferase deficiency in children. Pediatr Nephrol 27:571–579

    Google Scholar 

  78. Van Acker KJ, Simmonds HA, Potter C, Cameron JS (1977) Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N Engl J Med 297:127–132

    Google Scholar 

  79. Bollée G, Dollinger C, Boutaud L et al. (2010) Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol 21:679–688

    Google Scholar 

  80. Bollée G, Harambat J, Bensman A (2012) Adenine Phosphoribosyltransferase Deficiency. Clin J Am Soc Nephrol 7:1521–1527

    Google Scholar 

  81. Greenwood MC, Dillon MJ, Simmonds HA et al. (1982) Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr 138:346–349

    Google Scholar 

  82. Hidaka Y, Tarlé SA, Fujimori S et al. (1988) Human adenine phosphoribosyltransferase deficiency. Demonstration of a single mutant allele common to the Japanese. J Clin Invest 81:945–950

    Google Scholar 

  83. Sahota A, Chen J, Stambrook PJ, Tischfield JA (1991) Mutational basis of adenine phosphoribosyltransferase deficiency. Adv Exp Med Biol 309B:73–76

    Google Scholar 

  84. Eller P, Rosenkranz AR, Mark W et al. (2004) Four consecutive renal transplantations in a patient with adenine phosphoribosyltransferase deficiency. Clin Nephrol 61:217–221

    Google Scholar 

  85. Toren A, Brok-Simoni F, Ben-Bassat I et al. (1994) Congenital haemolytic anemia associated with adenylate kinase deficiency. Br J Haematol 87:376–380

    Google Scholar 

  86. Henderson LA, Frugoni F, Hopkins G et al. (2013) First reported case of Omenn syndrome in a patient with reticular dysgenesis. J Allergy Clin Immunol 131:1227–1230

    Google Scholar 

  87. Lagresle-Peyrou C, Six EM, Picard C et al. (2009) Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet 41:106–111

    Google Scholar 

  88. Six E, Lagresle-Peyrou C, Susini S et al. (2015) AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages. Cell Death Dis 6:e1856

    Google Scholar 

  89. Bjursell MK, Blom HJ, Cayuela JA et al. (2011) Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet 89:507–5015

    Google Scholar 

  90. Staufner C, Lindner M, Dionisi-Vici C et al. (2015) Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options. JIMD 38:S42

    Google Scholar 

  91. E Wiame, D Balthausen, J Dewulf et al. (2015) New biochemical markers in adenosine kinase deficiency. JIMD 38:S232

    Google Scholar 

  92. Chen YZ, Friedman JR, Chen DH et al. (2014) Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 75:542–549

    Google Scholar 

  93. Mencacci NE1, Erro R, Wiethoff S et al. (2015) ADCY5 mutations are another cause of benign hereditary chorea. Neurology 85:80–88

    Google Scholar 

  94. Chen DH, Meneret A, Friedman JR et al. (2015) ADCY5-related dyskinesia: Broader spectrum and genotype-phenotype correlations. Neurology 85:2026–2035

    Google Scholar 

  95. Bowne SJ, Sullivan LS, Mortimer SE et al. (2006) Spectrum and frequency of mutations in IMPDH1associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest Ophtalmol Vis Sci 47:34–42

    Google Scholar 

  96. Borràs E, de Sousa Dias M, Hernan I et al. (2013) Detection of novel genetic variation in autosomal dominant retinitis pigmentosa. Clin Genet 84:441–452

    Google Scholar 

  97. Scaglia F, Dimmock D, Wong LJ (2009) DGUOK-related mitochondrial DNA depletion syndrome, hepatocerebral form. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews. http://www.ncbi.nlm.nih.gov/books/NBK7040/. Least view: 29.04.2016

  98. Mandel H, Szargel R, Labay V et al. (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 29:337–341

    Google Scholar 

  99. Buchaklian AH, Helbling D, Ware SM, Dimmock DP (2012) Recessive deoxyguanosine kinase deficiency causes juvenile onset mitochondrial myopathy. Mol Genet Metab 107:92–94

    Google Scholar 

  100. Dimmock DP, Dunn JK, Feigenbaum A et al. (2008) Abnormal neurological features predict poor survival and should preclude liver transplantation in patients with deoxyguanosine kinase deficiency. Liver Transpl 14:1480–1485

    Google Scholar 

  101. Bulst S, Abicht A, Holinksi-Feder E et al. (2009) In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Hum Mol Genet 18:1590–1599

    Google Scholar 

  102. Aarbakke J, Janka-Schaub G, Elion GB (1997) Thiopurine biology and pharmacology. TIPS 18:3–7

    Google Scholar 

  103. Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64:753–767

    Google Scholar 

  104. Yates CR, Krynetski EY, Loennechen T et al. (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126:608–614

    Google Scholar 

  105. Sanderson J, Ansari A, Marinaki T, Duley J (2004) Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy ? Ann Clin Biochem 41:294–302

    Google Scholar 

  106. Ng BG, Wolfe LA, Ichikawa M, Markello T et al. (2015) Biallelic mutations in CAD, impair de novo pyrimidine biosyhthesis and decrease glycosylation precursors. Hum Mol Genet 24:3050–3057

    Google Scholar 

  107. Huguley CM, Bain JA, Rivers SL, Scoggins RB (1959) Refractory megaloblastic anemia associated with excretion of orotic acid. Blood 14:615–634

    Google Scholar 

  108. Smith LH (1973) Pyrimidine metabolism in man. N Engl J Med 288:764–771

    Google Scholar 

  109. Bailey CJ (2009) Orotic aciduria and uridine monophosphate synthase: a reappraisal. J Inher Metab Dis 32 Suppl 1:S227–233

    Google Scholar 

  110. Grohmann K, Lauffer H, Lauenstein P, Hoffmann GF, Seidlitz G (2015). Hereditary orotic aciduria with epilepsy and without megaloblastic anemia. Neuropediatrics 46:123–125

    Google Scholar 

  111. Suchi M, Mizuno H, Kawai Y et al. (1997) Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families. Am J Hum Genet 60:525–539

    Google Scholar 

  112. Perry ME, Jones ME (1989) Orotic aciduria fibroblasts express a labile form of UMP synthase. J Biol Chem 264:15522–15528

    Google Scholar 

  113. Ng SB, Buckingham KJ, Lee C et al. (2010) Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 42:30–35

    Google Scholar 

  114. Rainger J, Bengani H, Campbell L et al. (2012) Miller syndrome (Genee-Wiedemann syndrome) represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH. Hum Mol Genet 21:3660–3983

    Google Scholar 

  115. Van Gennip AH, Abeling NGGM, Vreken P, van Kuilenburg ABP (1997) Inborn errors of pyrimidine degradation: clinical, biochemical and molecular aspects. J Inher Metab Dis 20:203–213

    Google Scholar 

  116. Tuchman M, Stoeckeler JS, Kiang DT et al. (1985) Familial pyrimidinemia and pyrimidinuria associated with severe fluorouracil toxicity. N Engl J Med 313:245–249

    Google Scholar 

  117. Van Kuilenburg ABP (2004) Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer 40:939–950

    Google Scholar 

  118. Van Kuilenburg AB, Vreken P, Abeling NG et al. (1999) Genotype and phenotype in patients with dihydropyrimidine dehydrogenase deficiency. Hum Genet 104:1–9

    Google Scholar 

  119. Van Kuilenburg ABP, Meijer J, Mul ANPM et al. (2009) Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency reveals large intragenic rearrangements of DPYD and a de novo interstitial deletion del (1)(p13.3p21.3). Hum Genet 125:581–590

    Google Scholar 

  120. Van Kuilenburg ABP, Meijer J, Mul ANPM (2010) Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet 128:529–538

    Google Scholar 

  121. Van Gennip AH, Driedijk PC, Elzinga A, Abeling NGGM (1992) Screening for defects of dihydropyrimidine degradation by analysis of amino acids in urine before and after acid hydrolysis. J Inher Metab Dis 15:413–415

    Google Scholar 

  122. Van Staveren MC, Guchelaar HJ, van Kuilenburg ABP, Gelderblom H, Maring JG (2013) Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J 13:389–395

    Google Scholar 

  123. Del Re M, Michelucci A, Di Leo A et al. (2015) Discovery of novel mutations in the dihydropyrimidine dehydrogenase gene associated with toxicity of fluoropyrimidines and viewpoint on preemptive pharmacogenetic screening in patients. EPMA J 6:17

    Google Scholar 

  124. Van Kuilenburg ABP, Dobritzsch D, Meijer J et al. (2010) Dihydropyrimidinase deficiency: phenotype, genotype and structural consequences in 17 patients. Bioch Biophys Acta 1802:639–648

    Google Scholar 

  125. Van Kuilenburg AB, Meinsma R, Zonnenberg BA et al. (2003) Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 9:4363–4367

    Google Scholar 

  126. Hamajima N, Kouwaki M, Vreken P et al. (1998) Dihydropyrimidinase deficiency: structural organization, chromosomal localization, and mutation analysis of the human dihydropyrimidinase gene. Am J Hum Genet 63:717–726

    Google Scholar 

  127. Putman CW, Rotteveel JJ, Wevers RA et al. (1997) Dihydropyrimidinase deficiency: a progressive neurological disorder? Neuropediatrics 28:106–110

    Google Scholar 

  128. Assmann B, Göhlich G, Baethman M et al. (2006) Clinical findings and a therapeutic trial in the first patient with beta-ureidopropionase deficiency. Neuropediatrics 37:20–25

    Google Scholar 

  129. Van Kuilenburg AB, Meinsma R, Beke E et al. (2004) Beta-ureidopropionase deficiency: an inborn error or pyrimidine degradation associated with neurological abnormalities. Hum Mol Genet 13:2793–2801

    Google Scholar 

  130. Yaplito-Lee J, Pitt J, Meiijer J et al. (2008) Beta-ureidopropionase deficiency presenting with congenital anomalies of the urogenital and colorectal systems. Mol Genet Metab 93:190–194

    Google Scholar 

  131. Van Kuilenburg ABP, Dobritzsch D, Meijer J et al. (2012) Beta-Ureidopropionase deficiency, Phenotype, genotype and protein structural consequences in 16 patients. Biochim Biophys Acta 1822:1096–1108

    Google Scholar 

  132. Assmann BE, van Kuilenburg AB, Distelmaier F et al. (2006b) Beta-ureidopopionase deficiency presenting with febrile status epilepticus. Epilepsia 47:215–217

    Google Scholar 

  133. Nakajima Y, Meijer J, Dobritzsch D et al. (2014) Clinical, biochemical cand molecular analysis of 12 Japanese patients with beta-ureidopropionase deficiency demonstrates high prevalence of the p.977G>A (p.R326Q) mutation. J Inher Metab Dis 37:801–812

    Google Scholar 

  134. Kölker S, Okun JG, Hörster F et al. (2001) 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis. J Neurosci Res 66:666–673

    Google Scholar 

  135. Zanella A, Bianchi P, Fermo E, Valentini G (2006) Hereditary pyrimidine 5’-nucleotidase deficiency: from genetics to clinical manifestations. Br J Haemat 133:113–123

    Google Scholar 

  136. Page T, Yu A, Fontanesi J, Nyhan WL (1997) Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci USA 94:11601–11606

    Google Scholar 

  137. Nishino I, Spinazzola A, Papadimitriou A et al. (2000) MNGIE: an autosomal recessive disorder due to thymidine phosphorylase mutations. Ann Neurol 47:792–800

    Google Scholar 

  138. Halter J, Schüpbach WM, Casali C et al. (2011) Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a consensus conference proposal for a standardized approach. Bone Marrow Tranplant 46(3):330–337

    Google Scholar 

  139. Filosto M, Scarpelli M, Tonin P et al. (2012) Course and management of allogeneic stem cell transplantation in patients with mitochondrial neurogastrointestinal encephalomyopathy. J Neurol 259:2699–2706

    Google Scholar 

  140. Bax BE, Bain MD, Scarpelli M, Filosto M, Tonin P, Moran N (2013) Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology 81:1269–1271

    Google Scholar 

  141. Ciccolini J, Dahan L, André N et al. (2010) Cytidine deaminase residual activity in serum is a predictive marker of early severe toxicities in adults after gemcitabine-based chemotherapies. J Clin Oncol 28:160–165

    Google Scholar 

  142. Revy P, Muto T, Levy Y et al. (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102:565–575

    Google Scholar 

  143. Quartier P, Bustamante J, Sanal O et al. (2004) Clinical, immunologic and genetic analysis of 29 patients with autosomal recesive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol 110:22–29

    Google Scholar 

  144. Mahdaviani SA, Hirbod-Mobarakeh A, Wang N et al. (2012) Novel mutation of the activation-induced cytidine deaminase gene in a Tajik family: special review on hyper-immunoglobulin M syndrome. Expert Rev Clin Immunol 8:539–46

    Google Scholar 

  145. Saada A, Shaag A, Mandel H et al. (2001) Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 29:342–344

    Google Scholar 

  146. Oskoui M, Davidzon G, Pascual J et al. (2006) Clinical spectrum of mitochondrial DNA depletion due to mutations in the thymidine kinase 2 gene. Arch Neurol 63:1122–1126

    Google Scholar 

  147. Lesko N, Naess K, Wibom R et al. (2010) Two novel mutations in thymidine kinase-2 cause early onset fatal encephalomyopathy and severe mtDNA depletion. Neuromusc Dis 20:198–203

    Google Scholar 

  148. Koch J, Mayr JA, Alhaddad B et al. (2016) CAD Mutations and Uridine-Responsive Epileptic Encephalopathy (under review)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandrine Marie , Georges van den Berghe or Marie-Françoise Vincent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marie, S., van den Berghe, G., Vincent, MF. (2016). Disorders of Purine and Pyrimidine Metabolism. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics