Skip to main content

Disorders of Bile Acid Synthesis

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Most of the known enzyme deficiencies of bile acid synthesis affect both the 27-hydroxycholesterol and the 7α-hydroxycholesterol pathways; the exceptions are cholesterol 7α-hydroxylase deficiency and oxysterol 7α-hydroxylase deficiency. Because of the broad specificity of many of the enzymes, the major metabolites are often not those immediately proximal to the block. For instance, in 3β-hydroxy-∆5-C27-steroid dehydrogenase deficiency the major metabolite is not 7α-hydroxycholesterol but a series of unsaturated bile acids that have the normal bile acid side chain but persistence of the 3β, 7α-dihydroxy-∆5 structure of the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clayton PT (2011) Disorders of bile acid synthesis. J Inherit Metab Dis 34:593–604

    Google Scholar 

  2. Clayton PT, Leonard JV, Lawson AM et al. (1987) Familial giant cell hepatitis associated with synthesis of 3β,7α-dihydroxy- and 3β,7α,12α-trihydroxy-5-cholenoic acids. J Clin Invest 79:1031–1038

    Google Scholar 

  3. Heubi JE, Setchell KDR, Bove KE (2007) Inborn errors of bile acid metabolism. Semin Liver Dis 27:282–293

    Google Scholar 

  4. Subramaniam P, Clayton PT, Portmann BC et al. (2010) Variable clinical spectrum of the most common inborn error of bile acid metabolism – 3β-Hydroxy-∆5-C27-steroid dehydrogenase deficiency J Pediatr Gastroenterol Nutr 50:1–7

    Google Scholar 

  5. Jacquemin E, Setchell KDR, O’Connell NC et al. (1994) A new cause of progressive intrahepatic cholestasis: 3β-hydroxy-∆5-C27-steroid dehydrogenase / isomerase deficiency. J Pediatr 125:379–384

    Google Scholar 

  6. Molho-Pessach V, Rios JJ, Xing C et al. (2012) Homozygosity mapping identifies a bile acid biosynthetic defect in an adult with cirrhosis of unknown etiology. Hepatology 55:1139–1145

    Google Scholar 

  7. Ichimiya H, Egestad B, Nazer H et al. (1991) Bile acids and bile alcohols in a child with 3β-hydroxy-∆5-C27-steroid dehydrogenase deficiency: effects of chenodeoxycholic acid treatment. J Lipid Res 32:829–841

    Google Scholar 

  8. Schwarz M, Wright, AC, Davis DL et al. (2000) The bile acid synthetic gene 3-beta-hydroxy-delta-5-C27-steroid oxidoreductase is mutated in progressive intrahepatic cholestasis. J Clin Invest 106:1175–1184

    Google Scholar 

  9. Cheng JB, Jacquemin E, Gerhardt M et al. (2003) Molecular genetics of 3β-hydroxy-∆5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab 88:1833–1841

    Google Scholar 

  10. Lawson AM, Madigan MJ, Shortland DB, Clayton PT (1986) Rapid diagnosis of Zellweger syndrome and infantile Refsum’s disease by fast atom bombardment mass spectrometry of urine bile salts. Clin Chim Acta 161:221–231

    Google Scholar 

  11. Mills K, Mushtaq I, Johnson A et al. (1998) A method for the quantitation of conjugated bile acids in dried blood spots using electrospray ionization mass spectrometry. Pediatr Res 43:361–368

    Google Scholar 

  12. Buchmann MS, Kvittingen EA, Nazer H et al. (1990) Lack of 3β-hydroxy-∆5-C27-steroid dehydrogenase/isomerase in fibroblasts from a child with urinary excretion of 3β-hydroxy-∆5-bile acids: a new inborn error of metabolism. J Clin Invest 86:2034–2037

    Google Scholar 

  13. Gonzalez E, Gerhardt MF, Fabre M et al. (2009) Oral cholic acid for hereditary defects of primary bile acid synthesis: a safe and effective long term therapy. Gastroenterology 137:1310–1320

    Google Scholar 

  14. Riello L1, D’Antiga L, Guido Met al.( 2010) Titration of bile acid supplements in 3beta-hydroxy-Delta 5-C27-steroid dehydrogenase/isomerase deficiency. J Pediatr Gastroenterol Nutr. 50:655–660

    Google Scholar 

  15. Clayton PT, Mills KA, Johnson AW et al. (1996) Delta 4-3-oxosteroid 5 beta-reductase deficiency: failure of ursodeoxycholic acid treatment and response to chenodeoxycholic acid plus cholic acid. Gut 38:623–628

    Google Scholar 

  16. Lemonde HA, Custard EJ, Bouquet J et al. (2003) Mutations in SRD5B1 (AKR1D1), the gene encoding ∆4-3-oxosteroid 5β-reductase, in hepatitis and liver failure in infancy. Gut 52:1494–1499

    Google Scholar 

  17. Gonzales E, Cresteil D, Baussan C et al. (2004) SRD5B1 (AKR1D1) gene analysis in delta(4)-3-oxosteroid 5beta-reductase deficiency: evidence for primary genetic defect. J Hepatol 40:716–718

    Google Scholar 

  18. Zhao J, Fang LJ, Setchell KD et al. (2012) Primary ∆4-3-oxosteroid 5β-reductase deficiency: two cases in China. World J Gastroenterol 18:7113–7117

    Google Scholar 

  19. Seki Y, Mizuochi T, Kimura A et al. (2013) Two neonatal cholestasis patients with mutations in the SRD5B1 (AKR1D1) gene: diagnosis and bile acid profiles during chenodeoxycholic acid treatment. J Inherit Metab Dis.36:565–573

    Google Scholar 

  20. Sumazaki R, Nakamura N, Shoda J et al. (1997) Gene analysis in ∆4-3-oxosteroid 5β-reductase deficiency. Lancet 349:329

    Google Scholar 

  21. Setchell KDR, Suchy FJ, Welsh MB et al. (1988) ∆4-3-Oxosteroid 5β-reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis. J Clin Invest 82:2148–2157

    Google Scholar 

  22. Schneider BL, Setchell KDR, Whittington PF et al. (1994) ∆4-3-Oxosteroid 5β-reductase deficiency causing neonatal liver failure and neonatal hemochromatosis. J Pediatr 124:234–238

    Google Scholar 

  23. Clayton PT, Patel E, Lawson AM et al. (1988) 3-Oxo-∆4 bile acids in liver disease. Lancet 1:1283–1284

    Google Scholar 

  24. Clayton PT (1994) ∆4-3-Oxosteroid 5β-reductase deficiency and neonatal hemochromatosis (letter). J Pediatr 125:845–846

    Google Scholar 

  25. Palermo M, Marazzi MG, Hughes BA et al. (2008) Human Δ4-3-oxosteroid 5β-reductase (AKR1D1) deficiency and steroid metabolism. Steroids 73:417–423

    Google Scholar 

  26. Drury JE, Mindnich R, Penning TM (2010) Characterization of disease-related 5beta-reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency. J Biol Chem 285:24529–24537

    Google Scholar 

  27. Nie S,Chen G, Cao X, Zhang Y (2014) Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 9:179–190

    Google Scholar 

  28. Clayton PT, Casteels M, Mieli-Vergani G, Lawson AM (1995) Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis? Pediatr Res 37:424–431

    Google Scholar 

  29. Clayton PT, Verrips A, Sistermans E et al. (2002) Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inherit Metab Dis 25:501–513

    Google Scholar 

  30. Wevers RA, Cruysberg JRM, Heijst v AFJ et al. (1992) Paediatric cerebrotendinous xanthomatosis. J Inherit Metab Dis 14:374–376

    Google Scholar 

  31. Kuriyama M, Fujiyama J, Yoshidome H et al. (1991) Cerebrotendinous xanthomatosis: clinical features of eight patients and a review of the literature. J Neurol Sci 102:225–232

    Google Scholar 

  32. Bencze K, Polder DRV, Prockop LD (1990) Magnetic resonance imaging of the brain in CTX. J Neurol Neurosurg Psychiatry 53:166–167

    Google Scholar 

  33. Berginer VM, Shany S, Alkalay D et al. (1993) Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis. Metabolism 42:69–74

    Google Scholar 

  34. Cali JJ, Russell DW (1991) Characterisation of human sterol 27-hydroxylase: a mitochondrial cytochrome P-450 that catalyses multiple oxidations in bile acid biosynthesis. J Biol Chem 266:7774–7778

    Google Scholar 

  35. Theofilopoulos S, Griffiths WJ, Crick PJ et al. (2014) Cholestenoic acids regulate motor neuron survival via liver X receptors. J Clin Invest 124:4829–4842

    Google Scholar 

  36. Babiker A, Andersson O, Lund E et al. (1997) Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272:26253–26261

    Google Scholar 

  37. Cali JJ, Hsieh C-L, Francke U, Russell DW (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266:7779–7783

    Google Scholar 

  38. Leitersdorf E, Reshef A, Meiner V et al. (1993) Frameshift and splice-junction mutations in the sterol 27-hydroxylase gene cause cerebrotendinous xanthomatosis in Jews of Moroccan origin. J Clin Invest 91:2488–2496

    Google Scholar 

  39. Gallus GN, Dotti MT, Federico A (2006) Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol Sci 27:143–149

    Google Scholar 

  40. Egestad B, Pettersson P, Skrede S, Sjövall J (1985) Fast atom bombardment mass spectrometry in the diagnosis of cerebrotendinous xanthomatosis. Scand J Clin Lab Invest 45:443–446

    Google Scholar 

  41. Koopman BJ, Molen JC, Wolthers BG, Waterreus RJ (1987) Screening for CTX by using an enzymatic method for 7α-hydroxylated steroids in urine. Clin Chem 33:142–143

    Google Scholar 

  42. Koopman BJ, Waterreus RJ, Brekel HWC, Wolthers BG (1986) Detection of carriers of CTX. Clin Chim Acta 158:179–186

    Google Scholar 

  43. Skrede S, Björkhem I, Kvittingen EA et al. (1986) Demonstration of 26-hydroxylation of C27-steroids in human skin fibroblasts, and a deficiency of this activity in CTX. J Clin Invest 78:729–735

    Google Scholar 

  44. Berginer VM, Salen G, Shefer S (1984) Long-term treatment of CTX with chenodeoxycholic acid therapy. N Engl J Med 311:1649–1652

    Google Scholar 

  45. Berginer VM, Berginer J, Korczyn AD, Tadmor R (1994) Magnetic resonance imaging in cerebrotendinous xanthomatosis: a prospective clinical and neuroradiological study. J Neurol Sci 122:102–108

    Google Scholar 

  46. Lewis B, Mitchell WD, Marenah CB, Cortese C (1983) Cerebrotendinous xanthomatosis: biochemical response to inhibition of cholesterol synthesis. Br Med J 287:2122

    Google Scholar 

  47. Mimura Y, Kuriyama M, Tokimura Y et al. (1993) Treatment of cerebrotendinous xanthomatosis with low density lipoprotein (LDL)-apheresis. J Neurol Sci 114:227–230

    Google Scholar 

  48. Ferdinandusse S, Denis S, Clayton PT et al. (2000) Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 24:188–191

    Google Scholar 

  49. Clarke CE, Alger S, Preece MA et al. (2004) Tremor and deep white matter changes in alpha-methylacyl-CoA racemase deficiency. Neurology 63:188–189

    Google Scholar 

  50. Thompson SA, Calvin J, Hogg S et al. (2007) Relapsing encephalopathy in a patient with α-methyacyl-CoA racemase deficiency. J Neurol Neurosurg Psychiatry 79:448–450

    Google Scholar 

  51. Dick D, Horvath R, Chinnery PF (2011) AMACR mutations cause late-onset autosomal recessive cerebellar ataxia. Neurology. 76:1768–1770

    Google Scholar 

  52. Veldhoven v PP, Meyhi E, Squires RH et al. (2001) Fibroblast studies documenting a case of peroxisomal 2-methylacyl-CoA racemase deficiency: possible link between racemase deficiency and malabsorption and vitamin K deficiency. Eur J Clin Invest 31:714–722

    Google Scholar 

  53. Setchell KD, Heubi JE, Bove KE et al. (2003) Liver disease caused by failure to racemise trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology 124:217–232

    Google Scholar 

  54. Setchell KDR, Schwarz M, O’Connell NC et al. (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 102:1690–1703

    Google Scholar 

  55. Ueki I, Kimura A, Nishiyori A et al. (2008) Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7β-hydroxylase gene. J Pediatr Gastroenterol Nutr 46:465–469

    Google Scholar 

  56. Dai D, Mills PB, Footitt E et al. (2014) Liver disease in infancy caused by oxysterol 7 α-hydroxylase deficiency: successful treatment with chenodeoxycholic acid. J Inherit Metab Dis. 37:851–861

    Google Scholar 

  57. Tsaousidou MK, Ouahchi K, Warner TT et al. (2008) Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82:510–515

    Google Scholar 

  58. Mochel F, Rinaldo D, Lamari F et al. (2011) Spastic paraplegia due to CYP7B1 mutations (SPG5): What can we learn about 27-hydroxycholesterol metabolism? J Inherit Metab Dis 34:266

    Google Scholar 

  59. Carlton VE, Harris BZ, Puffenberger EG et al. (2003) Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet 34:91–96

    Google Scholar 

  60. Hadžić N, Bull LN, Clayton PT, Knisely AS (2012) Diagnosis in bile acid-CoA: amino acid N-acyltransferase deficiency. World J Gastroenterol 18:3322–3326

    Google Scholar 

  61. Setchell KD1, Heubi JE, Shah S et al. (2013) Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology 144:945–955

    Google Scholar 

  62. Heubi JE, Setchell KD, Jha P et al. (2015) Treatment of bile acid amidation defects with glycocholic acid. Hepatology 61:268–274

    Google Scholar 

  63. Chong CP, Mills PB, McClean P et al. (2012) Bile acid-CoA ligase deficiency – a new inborn error of bile acid metabolism. J Inherit Metab Dis 35:521–530

    Google Scholar 

  64. Pullinger CR, Eng C, Salen G et al. (2002) Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110:109–117

    Google Scholar 

  65. Ferdinandusse S, Jimenez-Sanchez G, Koster J et al. (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24:361–370

    Google Scholar 

  66. Degos B, Nadjar Y, Amador MDM et al. (2016) Natural history of cerebrotendinous xanthomatosis:a paediatric disease diagnosed in adulthood. Orphanet J Rare Dis 11:41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T. Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clayton, P.T. (2016). Disorders of Bile Acid Synthesis. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics