Skip to main content

Inborn Errors of Lipoprotein Metabolism Presenting in Childhood

  • Chapter
Inborn Metabolic Diseases
  • 3715 Accesses

Zusammenfassung

Lipids are highly diverse molecules that are traditionally best known for their role in the formation of biological membranes and cellular systems and as a way to store energy. In the last decade, lipids have taken a more center stage in apoptosis, cell signaling, inflammation, immunity and inborn errors of metabolism (IEMs). Inborn errors of lipoprotein metabolism are a group of genetic disorders exemplified by changes in plasma lipids due to defects in the protein lipid-carriers (lipoproteins), lipoprotein receptors, or enzymes responsible for the hydrolysis and clearance of lipoprotein-lipid complexe. The proteins responsible for the maintenance of normal plasma and tissue lipids, which are primarily triglycerides and free and esterified cholesterol, include the apolipoproteins A-I, A-II, A-IV, A-V, B, C-I, C-II, C-III, and E with key enzymes including lipoprotein lipase (LPL), hepatic triglyceride lipase (LIPC), lecithin cholesterol acyltransferase (LCAT), and cholesterol ester transfer protein (CETP); and key receptors being the low-density lipoprotein receptor (LDL-R) for LDL-Cholesterol, and the ATP-binding cassette transporter 1 (ABC1A) for HDL-Cholesterol levels. A number of genetic abnormalities of lipoprotein metabolism have been described in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bauer RC, Stylianou IM, Rader DJ (2011) Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Curr Opin Lipidol 22:123–128

    Google Scholar 

  2. Martín-Campos JM, Julve J, Roig R et al. (2014) Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency. Clin Chim Acta 429:61–68

    Google Scholar 

  3. Teslovich TM, Musunuru K, Smith AV et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    Google Scholar 

  4. Nordestgaard BG, Chapman MJ, Humphries SE et al. (2013) Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disase: consensus statement of the European Atherosclerosis Society. Eur Hear J 34:3478–3490

    Google Scholar 

  5. Soutar AK, Naoumova RP (2007) Mechanisms of disease: genetic causes of familial hypercholesterolaemia. Nat Clin Pract Cardiovasc Med 4:214–225

    Google Scholar 

  6. Myant NB (1993) Familial defective apolipoprotein B-100: a review, including some comparisons with familialhypercholesterolaemia. Atherosclerosis 104:1–18

    Google Scholar 

  7. Fouchier SW, Dallinga-Thie GM, Meijers JC et al. (2014) Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ Res 115:552–555

    Google Scholar 

  8. Barbagallo CM, Emmanuele G, Cefalù AB et al. (2003) Autosomal recessive hypercholesterolemia in a Sicilian kindred harboring the 432insA mutation of the ARH gene. Atherosclerosis 166:395–400

    Google Scholar 

  9. Talmud PJ, Shah S, Whittall R et al. (2013) Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet 381:1293–1301

    Google Scholar 

  10. Stitziel NO, Fouchier SW, Sjouke B et al. (2013) Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. National Heart, Lung, and Blood Institute GO Exome Sequencing Project. Arterioscler Thromb Vasc Biol 33:2909–2914

    Google Scholar 

  11. Gaudet D, Méthot J, Kastelein J (2012) Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol 23:310–320

    Google Scholar 

  12. Hooper AJ, Burnett JR (2014) Update on primary hypobetalipoproteinemia. Curr Atheroscler Rep 16:423

    Google Scholar 

  13. Peretti N, Sassolas A, Roy CC, Deslandres C et al. (2010) Guidelines for the diagnosis and management of chylomicronretentiondisease based on a review of the literature and the experience of two centers. Orphanet J Rare Diseases 29:5–24

    Google Scholar 

  14. Johansen CT, Hegele RA (2011) Genetic bases of hypertriglyceridemic phenotypes. Curr Opin Lipidol 22:247–253

    Google Scholar 

  15. Calandra S, Priore Oliva C, Tarugi P et al. (2006) APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr Opin Lipidol 17:122–127

    Google Scholar 

  16. Dorfmeister B, Zeng WW, Dichlberger A et al. (2008) Effects of six APOA5 variants, identified in patients with severe hypertriglyceridemia, on in vitro lipoprotein lipase activity and receptor binding. Arterioscler Thromb Vasc Biol 28:1866–1871

    Google Scholar 

  17. Romeo S, Yin W, Kozlitina J et al. (2009) Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest 119:70–79

    Google Scholar 

  18. Adeyo O, Goulbourne CN, Bensadoun A et al. (2012) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins. J Intern Med 272:528–540

    Google Scholar 

  19. Roshan B, Ganda OP, Desilva R et al. (2011) Homozygous lecithin:cholesterol acyltransferase (LCAT) deficiency due to a new loss of function mutation and review of the literature. J Clin Lipidol 5:493–499

    Google Scholar 

  20. Saeedi R, Li M, Frohlich J (2015) A review on lecithin: cholesterol acyltransference deficiency. J Clin Biochem 48:472–475

    Google Scholar 

  21. Burton BJ et al. (2015) Clinical Features of Lysosomal Acid Lipase Deficiency. J Pediatr Gastroenterol Nutr 61:619–625

    Google Scholar 

  22. Fouchier SW, Defesche JC (2013). Lysosomal acid lipase A and the hypercholesterolaemic phenotype. Curr Opin Lipidol 24:332–338

    Google Scholar 

  23. Wiegman A et al. (2015) Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 36:2425–2437

    Google Scholar 

  24. Sjouke B, Hovingh GK, Kastelein JJ, Stefanutti C (2015) Homozygous autosomal dominant hypercholesterolaemia: Homozygous autosomal dominant hypercholesterolaemia: prevalence, diagnosis, and current and future treatment perspectives. Curr Opin Lipidol 26:200–209

    Google Scholar 

  25. Ejarque I et al. (2008) Evaluation of clinical diagnosis criteria of familial ligand defective apoB 100 and lipoprotein phenotype comparison between LDL receptor gene mutations affecting ligand-binding domain and the R3500Q mutation of the apoB gene in patients from a South European population. Translational Research 151:162–167

    Google Scholar 

  26. Fellin R et al. (2015) The history of Autosomal Recessive Hypercholesterolaemia (ARH). From clinical observations to gene identification. Gene 555:23–32

    Google Scholar 

  27. Schonfeld G (2003) Familial hypobetalipoproteinemia: a review. J Lipid Res 44:878–883

    Google Scholar 

  28. Zamel R et al. (2008) Abetalipoprotinaemia: two cases and literature review. Orphanet J Rare Dis 3:19

    Google Scholar 

  29. Kolorova H et al. (2014) Lipoprotein Lipase Deficiency: Clinical, Biochemical and Molecular Characteristics in three patients with novel mutations in the LPL gene. Folio Biologica (Praha) 60:235–243

    Google Scholar 

  30. Wierzbicki AS, Viljoen A (2013) Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency. Expert Opin Biol Ther 13:7–10

    Google Scholar 

  31. Baggio G et al. (1986) Apolipoprotein C-II deficiency syndrome. J Clin Invest 77:520–527

    Google Scholar 

  32. Piore-Olivia C et al. (2005) Inherited Apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc 25:411–417

    Google Scholar 

  33. Wang J, Hegele RA (2007) Homozygous missense mutation (G56R) in glycosylphosphatdylinositol-anchored high-density lipoprotein binding protein 1 9GPI-HBPI in two siblings with fasting chylomicronaemia. Lipids Health Dis 6:23–26

    Google Scholar 

  34. Porto AF (2014) Lysosomal acid lipase deficiency: diagnosis and treatment of wolman and cholesteryl ester storage diseases. Pediatr Endocrinol Rev Suppl 1:125–132

    Google Scholar 

  35. Stein J, Garty BZ, Dror Y et al. (2007) Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr 166:663–666

    Google Scholar 

  36. Valayannopoulos V, Malinova V, Honzík T et al. (2014) Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol 61:1135–1142

    Google Scholar 

  37. Yanir A, Allatif MA et al. (2013) Unfavorable outcome of hematopoietic stem cell transplantation in two siblings with Wolman disease due to graft failure and hepatic complications. Mol Genet Metab 109:224–226

    Google Scholar 

  38. Escolà-Gil JC et al. (2014) Sitosterolemia. Diagnosis, Investigation and management. Current Atheroscler Rep 16:424

    Google Scholar 

  39. Kwiterovich PO Jr (2008) Recognition and Management of dyslipidemia in children and adolescents. J Clin Endocrinol Metab 93:4200–4209

    Google Scholar 

  40. Hoffman EP, Barr ML, Giovanni MA, et al. (2015) Lysosomal Acid Lipase Deficiency. In: Pagon RA, Adam MP, Ardinger HH et al. (eds). GeneReviews. Available from: http://www.ncbi.nlm.nih.gov/books/NBK305870/

  41. Burton BK, Balwani M et al. (2015) A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency. N Engl J Med. 373:1010–1020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Uma Ramaswami or Steve Humphries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramaswami, U., Humphries, S. (2016). Inborn Errors of Lipoprotein Metabolism Presenting in Childhood. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics