Skip to main content

Trimethylaminuria, Dimethylglycine Dehydrogenase Deficiency and Disorders in the Metabolism of Glutathione

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Trimethylamine (TMA) is a volatile tertiary amine which smells of rotting fish. It is a bacterial metabolite which is produced by anaerobes resident in the human colon from choline (present in lecithin), carnitine and betaine, and from trimethylamine-N-oxide (TMAO) in salt water fish and shellfish. Catabolism of choline occurs within the mitochondria and involves the sequential removal of two methyl groups by dimethylglycine dehydrogenase (DMGDH) and sarcosine dehydrogenase (SDH). Glutathione (GSH) is a tripeptide consisting of glutamate, cysteine and glycine. It is ubiquitous in the eukaryotic organism and plays a role in many fundamental cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell SC, Smith RL (2001) Trimethylaminuria: the fish malodor syndrome. Drug Metab Dispos 29:517–521

    Google Scholar 

  2. Koukouritaka SB, Simpson P, Yeung CK et al. (2002) Human hepatic flavin-containing monooxygenase 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res 51:236–243

    Google Scholar 

  3. Cashman JR, Camp K, Fakharzadeh SS et al. (2003) Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. Curr Drug Metab 4:151–170

    Google Scholar 

  4. Phillips IR, Shephard EA (2007) Primary trimethylaminuria. In: Pagon RA, Adam MP, Ardinger HH et al. (eds). GeneReviews [Internet]. Seattle, Washington, University of Washington, Seattle; 1993-2016. Updated October 1 2015

    Google Scholar 

  5. Mackay RJ, McEntyre CJ, Henderson C et al. (2011) Trimethylaminuria: causes and diagnosis of a socially distressing condition. Clin Biochem Rev 32:33–43

    Google Scholar 

  6. Zschocke J, Kohlmueller D, Quak E et al. (1999) Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet 354:834–835

    Google Scholar 

  7. Zschocke J, Mayatepek E (2000) Biochemical and molecular studies in mild flavin monooxygenase 3 deficiency. J Inherit Metab Dis 23:378–382

    Google Scholar 

  8. Tang WHW, Wang Z, Levison BS et al. (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584

    Google Scholar 

  9. Shih DM, Wang Z, Lee R et al (2015) Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 56:22–37

    Google Scholar 

  10. Kreuger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387

    Google Scholar 

  11. Mayatepek E, Flock B, Zschocke J (2004) Benzydamine metabolism in vivo is impaired in patients with deficiency of flavin-containing monooxygenase 3. Pharmacogenetics 14:775–777

    Google Scholar 

  12. Moolenaar SH, Poggi-Bach J, Engelke UFH et al (1999) Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clin Chem 45:459–464

    Google Scholar 

  13. Goodman SI, Duran M (2014) Biochemical Phenotypes of Questionable Clinical Significance. In: Blau N, Duran M, Gibson M, Dionisi-Vici C (eds) Physician’s Guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases. Springer-Verlag Berlin, p 691

    Google Scholar 

  14. Leys D, Basran J, Scrutton NS (2003) Channelling and formation of ›active‹ formaldehyde in dimethylglycine oxidase. EMBO J 22:4038–4048

    Google Scholar 

  15. Binzak BA, Vockley JG, Jenkins RB, Vockley J (2000). Structure and analysis of the human dimethylglycine dehydrogenase gene. Mol Genet Metab 69:181–187

    Google Scholar 

  16. Binzak BA, Wevers RA, Moolenaar SH et al (2001) Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. Am J Hum Genet 68:839–847

    Google Scholar 

  17. McAndrew RP, Vockley J, Kim JJ (2008) Molecular basis of dimethylglycine dehydrogenase deficiency associated with pathogenic variant H109R. J Inherit Metab Dis 31:761–768

    Google Scholar 

  18. Lewis-Stanislaus AE, Li L (2010) A method for comprehensive analysis of urinary acylglycines by using ultra-performance liquid chromatography quadrupole linear ion trap mass spectrometry. J Am Soc Mass Spectrom 21:2105–2116

    Google Scholar 

  19. Konrad PN, Richards FD, Valentine WN, Paglia DE (1972) γ-Glutamyl-cysteine synthetase deficiency. A cause of hereditary hemolytic anemia. N Engl J Med 286:557–561

    Google Scholar 

  20. Akai S, Hosomi H, Minami K et al. (2007) Knock down of gamma-glutamylcysteine synthetase in rat causes acetaminophen-induced hepatotoxicity. J Biol Chem 282:23996–24003

    Google Scholar 

  21. Sierra-Rivera E, Summar M L, Dasouki M et al. (1995) Assignment of the gene (GLCLC) that encodes the heavy subunit of γ-glutamylcysteine synthetase to human chromosome 6. Cytogenet Cell Genet 70:278–279

    Google Scholar 

  22. Yang Y, Dieter MZ, Chen Y et al. (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277:49446–49452

    Google Scholar 

  23. Ristoff E, Mayatepek E, Larsson A (2001) Long-term clinical outcome in patients with glutathione synthetase deficiency. J Pediatr 139:79–84

    Google Scholar 

  24. Schlune A, Mayatepek E (2011) Glutathione synthetase deficiency: an inborn error of the gamma-gutamyl cyle. J Pediatric Sciences 3:e70

    Google Scholar 

  25. Njalsson R, Norgren S (2005) Genotype, enzyme activity, glutathione level, and clinical phenotype in patients with glutathione synthetase deficiency. Acta Paediatr 94:132–137

    Google Scholar 

  26. Ristoff E, Augustson C, Larsson A (1999) Generalized glutathione synthetase deficiency and pregnancy. J Inherit Metab Dis 22:758–759

    Google Scholar 

  27. Mayatepek E, Hoffmann GF, Carlsson B, Larsson A, Becker K (1994) Impaired synthesis of lipoxygenase products in glutathione synthetase deficiency. Pediatr Res 35:307–310

    Google Scholar 

  28. Simon E, Vogel M, Fingerhut R et al. (2009) Diagnosis of glutathione synthetase deficiency in newborn screening. J Inherit Metab Dis 32:S269–272

    Google Scholar 

  29. Okun JG, Sauer S, Bähr S, Lenhartz H, Mayatepek E (2004) S-Acetylglutathione normalizes intracellular glutathione content in cultured fibroblasts from patients with glutathione synthetase deficiency. J Inherit Metab Dis 27:783–786

    Google Scholar 

  30. Hammond JW, Potter M, Wilcken B, Truscott R (1995) Siblings with γ-glutamyltransferase deficiency. J Inherit Metab Dis 18:82–83

    Google Scholar 

  31. Kumar TR, Wiseman AL, Kala G et al. (2000) Reproductive defects in gamma-glutamyl transpeptidase-deficient mice. Endocrinology 141:4270–4277

    Google Scholar 

  32. Calpena E, Deshpande AA, Yap S et al. (2015) New insights into the genetics of 5-oxoprolinase deficiency and further evidence that it is a benign biochemical condition. Eur J Pediatr 174:407–411

    Google Scholar 

  33. Mayatepek E, Badiou S, Bellet H, Lehmann WD (2005) A patient with neurological symptoms and abnormal leukotriene metabolism: a new defect in leukotriene biosynthesis. Ann Neurol 58:968–970

    Google Scholar 

  34. Nitanai Y, Satow Y, Adachi H, Tsujimoto M (2002) Crystal structure of human renal dipeptidase involved in beta-lactam hydrolysis. Mol Biol 321:177–184

    Google Scholar 

  35. Mayatepek E (1999) 5-Oxoprolinuria in patients with and without defects in the γ-glutamyl cycle. Eur J Pediatr 158:221–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Walter , Ron A. Wevers or Ertan Mayatepek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, J., Wevers, R.A., Mayatepek, E. (2016). Trimethylaminuria, Dimethylglycine Dehydrogenase Deficiency and Disorders in the Metabolism of Glutathione. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics