Skip to main content

Disorders of Neurotransmission

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

This chapter deals primarily with inborn errors of neurotransmitter metabolism. Defects of their receptors and transporters are also discussed. Three defects of GABA catabolism have been reported: GABA transaminase deficiency (very rare, severe, and untreatable), succinic semialdehyde dehydrogenase (SSADH) deficiency, and homocarnosinosis. Hyperekplexia is usually due to a dominantly inherited defect of the α1 subunit of the glycine receptor which causes excessive startle responses, and is treatable with clonazepam. Mutations in GABAA receptor are a cause of dominantly inherited epilepsy while mutations in glutamate receptors associate with neurodevelopmental and psychiatric disorders. Three transportopathies are reported: mitochondrial glutamate transporter defect, which is a cause of severe epileptic encephalopathy, and diseases that produce early parkinsonism-dystonia: dopamine transporter defect and vesicular monoamine transporter type 2 defect. Six disorders of monoamine metabolism are discussed: Tyrosine hydroxylase (TH) deficiency impairs synthesis of dihydroxyphenylalanine (L-dopa) and causes a neurological disease with prominent extrapyramidal signs, and a variable response to L-dopa. The clinical hallmark of dopamine β-hydroxylasedeficiency is severe orthostatic hypotension with sympathetic failure. The other disorders of monoamine metabolism involve both catecholamine and serotonin metabolism. Aromatic L-amino acid decarboxylase (AADC) is located upstream of the neurotransmitter amines; treatment can be challenging. Monoamine-oxidase A (MAO-A) deficiency, located downstream, mainly causes behavioral disturbances; no effective treatment is known. Guanosine triphosphate cyclohydrolase-I (GTPCH-I) and Sepiapterin reductase (SR) deficiencies are pterin disorders upstream of L-dopa and 5-hydroxytryptophan (5-HTP) with normal baseline phenylalaninemia and effective treatment (especially GTPCH-I deficiency).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaeken J, Casaer P, De Cock P et al. (1984) Gamma-aminobutyric acid-transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics 15:165–169

    Google Scholar 

  2. Tsuji M, Aida N, Obata T et al. (2010) A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 33:85–90

    Google Scholar 

  3. Pearl PL, Koenig MK, Riviello J et al. (2015) Novel intervention in GABA-transaminase deficiency. Ann Neurol 78 (suppl 19):S177–S178

    Google Scholar 

  4. Gibson KM, Sweetman L, Nyhan WL, Jansen I (1985) Demonstration of 4-aminobutyric acid aminotransferase deficiency in lymphocytes and lymphoblasts. J Inherit Metab Dis 8:204–208

    Google Scholar 

  5. Schor DS, Struys EA, Hogema BM, Gibson KM, Jakobs C (2001) Development of a stable-isotope dilution assay for gamma-aminobutyric acid (GABA) transaminase in isolated leukocytes and evidence that GABA and beta-alanine transaminases are identical. Clin Chem 47:525–531

    Google Scholar 

  6. Medina-Kauwe LK, Nyhan WL, Gibson KM, Tobin AJ (1998) Identification of a familial mutation associated with GABA-transaminase deficiency disease. Neurobiol Dis 5:89–96

    Google Scholar 

  7. Kok RM, Howells DW, van den Heuvel CCM et al. (1993) Stable isotope dilution analysis of GABA in CSF using simple solvent extraction and electron-capture negative ion mass fragmentography. J Inherit Metab Dis 16:508–512

    Google Scholar 

  8. Pop A, Struys EA, Van Oostendorp J et al. (2015) Model system for fast in vitro analysis of GABA-T missense variants. J Inherit Metab Dis 38 (Suppl 1):S315

    Google Scholar 

  9. Louro P, Ramos L, Robalo C et al (2016) Phenotyping GABA transaminase deficiency: a case description and literature review. J Inherit Metab Dis 39:743–747

    Google Scholar 

  10. Sweetman FR, Gibson KM, Sweetman L et al. (1986) Activity of biotin-dependent and GABA metabolizing enzymes in chorionic villus samples: potential for 1st trimester prenatal diagnosis. Prenat Diagn 6:187–194

    Google Scholar 

  11. Jakobs C, Bojasch M, Monch E et al. (1981) Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin Chim Acta 111:169–178

    Google Scholar 

  12. Pearl PL, Parviz M, Vogel K et al. (2014) Inherited disorders of gamma-aminobutyric acid metabolism and advances in ALDH5A1 mutation identification. Dev Med Child Neurol: doi: 10.1111/dmcn.12668. [Epub ahead of print]

    Google Scholar 

  13. Parviz M, Vogel K, Gibson KM, Pearl PL (2014) Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J Pediatr Epilepsy 3:217–227

    Google Scholar 

  14. Vogel KR, Pearl PL, Theodore WH et al. (2013) Thirty years beyond discovery – clinical trials in succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. J Inherit Metab Dis 36:401–410

    Google Scholar 

  15. Pearl PL, Gibson KM, Cortez MA et al. (2009) Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis 32:343–352

    Google Scholar 

  16. Kim KJ, Pearl PL, Jensen K et al. (2011) Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 15:691–718

    Google Scholar 

  17. Niemi A-K, Brown C, Moore T, Enns GM, Cowan TM (2012) Low glutathione levels in a patient with succinic semialdehyde dehydrogenase (SSADH) deficiency. Molec Genet Metab 105:345

    Google Scholar 

  18. Gibson KM, Gupta M, Senephansiri H et al. (2006) Oxidant stress and neurodegeneration in murine succinic semialdehyde dehydrogenase (SSADH) deficiency. In: Hoffmann GF (ed) Diseases of Neuro-transmission-from bench to bed. SPS Verlagsgesellschaft mbH, Heilbronn, Germany, Symposia Proceedings, pp 199–212

    Google Scholar 

  19. Hempel J, Lindahl R (1989) Class III aldehyde dehydrogenase from rat liver: superfamily relationship to classes I and II and functional interpretations. Prog Clin Biol Res 290:3–17

    Google Scholar 

  20. Knerr I, Gibson KM, Murdoch G et al. (2010) Neuropathology in succinic semialdehyde dehydrogenase deficiency. Pediatr Neurol 42:255–258

    Google Scholar 

  21. Lapalme-Remis S, Lewis E, De Meulemeester C et al. (2015) Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood. Neurology 85:861–865

    Google Scholar 

  22. Pearl PL, Schreiber J, Theodore WH et al. (2014) Taurine trial in succinic semialdehyde dehydrogenase deficiency and elevated CNS GABA. Neurology 82:940–944

    Google Scholar 

  23. Vogel KR, Ainslie GR, Jansen EE, Salomons GS, Gibson KM (2015) Torin 1 partially corrects vigabatrin-induced mitochondrial increase in mouse. Ann Clin Transl Neurol 2:699–706

    Google Scholar 

  24. Lakhani R, Vogel KR, Till A et al. (2014) Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med 6:551–566

    Google Scholar 

  25. Sjaastad O, Berstad J, Gjesdahl P, Gjessing L (1976) Homocarnosinosis. 2. A familial metabolic disorder associated with spastic paraplegia, progressive mental deficiency, and retinal pigmentation. Acta Neurol Scand 53:275–290

    Google Scholar 

  26. Kramarenko GG, Markova ED, Ivanova-Smolenskaya IA, Boldyrev AA (2001) Peculiarities of carnosine metabolism in a patient with pronounced homocarnosinemia. Bull Exp Biol Med 132: 996–999

    Google Scholar 

  27. Pearl PL, Hartka TR, Cabalza JL, Taylor J, Gibson KM (2006) Inherited disorders of GABA metabolism. Future Neurol 1:631–636

    Google Scholar 

  28. Jansen EE, Gibson KM, Shigematsu Y, Jakobs C, Verhoeven NM (2006) A novel, quantitative assay for homocarnosine in cerebrospinal fluid using stable-isotope dilution liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 830:196–200

    Google Scholar 

  29. Kirstein I, Silfverskiold BP (1958) A family with emotionally precipitated »drop seizures«. Acta Psychiatr Neurol Scand 33:471–476

    Google Scholar 

  30. de Koning-Tijssen MAJ, Rees MI (2009) In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds). GeneReviews [Internet]. Seattle, Wahington, University of Wahington, Seattle 1993–2007 Jul 31 [updated 2009 May 19] PMID 20301437 [Pubmed]

    Google Scholar 

  31. Bernasconi A, Cendes F, Shoubridge EA et al. (1998) Spectroscopic imaging of frontal neuronal dysfunction in hyperekplexia. Brain 121:1507–1512

    Google Scholar 

  32. Shiang R, Ryan SG, Zhu Y-Z et al. (1993) Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat Genet 5:351–358

    Google Scholar 

  33. Rees MI, Lewis TM, Kwok JBJ et al. (2002) Hyperekplexia associated with compound heterozygote mutations in the β-subunit of the human inhibitory glycine receptor (GLRB). Hum Mol Genet 11:853–860

    Google Scholar 

  34. Rees MI, Harvey K, Pearce BR et al. (2006) Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet 38:801–806

    Google Scholar 

  35. Rees MI, Harvey K, Ward H et al. (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia. J Biol Chem 278:24688–24696

    Google Scholar 

  36. Feng G, Tintrup H, Kirsch J et al. (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324

    Google Scholar 

  37. Harvey K, Duguid IC, Alldred MJ et al. (2004) The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24:5816–5826

    Google Scholar 

  38. Thomas RH, Chung SK, Wood SE et al. (2013) Genotype-phenotype correlations in hyper-ekplexia: apnoeas, learning difficulties and speech delay. Brain 136:3085–3095

    Google Scholar 

  39. Tijssen MA, Schoemaker HC, Edelbroek PJ et al. (1997) The effects of clonazepam and vigabatrin in hyperekplexia. J Neurol Sci 149:63–67

    Google Scholar 

  40. Galanopoulou AS (2010) Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 460:505–523

    Google Scholar 

  41. Lu Y, Wang X (2009) Genes associated with idiopathic epilepsies: a current overview. Neurol Res 31:135–143

    Google Scholar 

  42. Galanopoulou AS (2008) GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 6:1–20

    Google Scholar 

  43. Carvill GL, Weckhuysen S, McMahon JM et al. (2014) GABRA1 and STXBP1: Novel genetic causes of Dravet syndrome. Neurology 82:1245–1253

    Google Scholar 

  44. Hirose S (2014) Mutant GABA(A) receptor subunits in genetic (idiopathic) epilepsy. Prog Brain Res 213:55–85

    Google Scholar 

  45. Okamoto N, Miya F, Tsunoda T et al. (2015) Targeted next-generation sequencing in the diagnosis of neurodevelopmental disorders. Clin Genet 88:288–292

    Google Scholar 

  46. Kang JQ, Shen W, Zhou C et al. (2015) The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci 18:988–996

    Google Scholar 

  47. Soto D, Altafaj X, Sindreu C, Bayés A (2014) Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 7:e27887

    Google Scholar 

  48. Molinari F, Raas-Rothschild A, Rio M et al. (2005) Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 76:334–339

    Google Scholar 

  49. Poduri A, Heinzen EL, Chitsazzadeh V et al. (2013) SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol 74:873–882

    Google Scholar 

  50. Molinari F, Kaminska A, Fiermonte G et al. (2009) Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 76:188–194

    Google Scholar 

  51. Reid ES, Gosgene C, Anderson G et al. (2015) Mutations in SLC25A22 should be considered in SLC25A22 as a cause of hyperprolinaemia, epilepsy and developmental delay in children. J Inherit Metab Dis 38:S35–S378

    Google Scholar 

  52. Kurian MA, Zhen J, Cheng SY et al. (2009) Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 119:1595–1603

    Google Scholar 

  53. Ng J, Zhen J, Meyer E et al. (2014) Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. Brain 137:1107–1119

    Google Scholar 

  54. Hansen FH, Skjørringe T, Yasmeen S et al. (2014) Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. J Clin Invest 124:3107–3120

    Google Scholar 

  55. Rilstone JJ, Alkhater RA, Minassian BA (2013) Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med 368:543–550

    Google Scholar 

  56. Lüdecke B, Knappskog PM, Clayton PT et al. (1996) Recessively inherited L-dopa-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene. Hum Mol Genet 5:1023–1028

    Google Scholar 

  57. Willemsen MA, Verbeek MM, Kamsteeg EJ et al. (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133:1810–1822

    Google Scholar 

  58. Stamelou M, Mencacci NE, Cordivari C et al. (2012) Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology 79:435–441

    Google Scholar 

  59. Pons R, Syrengelas D, Youroukos S et al. (2013) Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord 28:1058–1063

    Google Scholar 

  60. Marecos C, NG J, Kurian M (2014) What is new in neurotransmitter disorders? J Inherit Metab Dis 37:619–626

    Google Scholar 

  61. Hyland K, Surtees RAH, Rodeck C, Clayton PT (1988) Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42:1980–1988

    Google Scholar 

  62. Brun L, Ngu LH, Keng WT et al. (2010) Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75:64–71

    Google Scholar 

  63. Manegold C, Hoffmann GF, Degen I et al. (2009) Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis 32:371–380

    Google Scholar 

  64. Ito S, Nakayama T, Ide S et al. (2008) Aromatic L-amino acid decarboxylase deficiency associated with epilepsy mimicking non-epileptic involuntary movements. Dev Med Child Neurol 50:876–878

    Google Scholar 

  65. Man in ’t Veld AJ, Boomsma F, Moleman P, Schalekamp MA (1987) Congenital dopamine-beta-hydroxylase deficiency. A novel orthostatic syndrome. Lancet 1:183–188

    Google Scholar 

  66. Robertson D, Garland EM (2005) Dopamine Beta-Hydroxylase Deficiency. In: Pagon RA, Bird TC, Dolan CR, Stephens K (eds). GeneReviews [Internet]. Seattle, Washington, University of Washington, Seattle

    Google Scholar 

  67. Deinum J, Steenbergen-Spanjers GC, Jansen M et al. (2004) DBH gene variants that cause low plasma dopamine beta hydroxylase with or without a severe orthostatic syndrome. J Med Genet 41:e38

    Google Scholar 

  68. Brunner HG, Nelen MR, van Zandvoort P et al. (1993) X-linked borderline mental retardation with prominent behavioural disturbance: phenotype, genetic localisation, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039

    Google Scholar 

  69. Cohen IL, Liu X, Schutz C et al. (2003) Association of autism severity with a monoamine oxidase A functional polymorphism. Clin Genet 64:190–197

    Google Scholar 

  70. Guo G, Ou X-M, Roettger M et al. (2008) The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity. Eur J Hum Genet 16:626–634

    Google Scholar 

  71. Lenders JWM, Eisenhofer G, Abeling NGGM et al. (1996) Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterised by distinct neurochemical and clinical phenotypes. J Clin Invest 97:1010–1019

    Google Scholar 

  72. Abeling NGGM, van Gennip AH, van Cruchten AG et al. (1998) Monoamine oxidase A deficiency: biogenic amine metabolites in random urine samples. J Neural Transm 52:S9–15

    Google Scholar 

  73. Malek N, Fletcher N, Newman E (2015) Diagnosing dopa-responsive dystonias. Pract Neurol 15:340–345

    Google Scholar 

  74. Tadic, V. Kasten M, Brüggemann N et al. (2012) Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol 69:1558–1562

    Google Scholar 

  75. Ichinose H, Ohye T, Takahashi E et al. (1994) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8:236–242

    Google Scholar 

  76. Wijemanne S, Jankovic J (2015) Dopa-responsive dystonia – clinical and genetic heterogeneity. Nat Rev Neurol 11:414–424

    Google Scholar 

  77. Friedman J, Roze E, Abdenau JE et al. (2012) Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 71:520–530

    Google Scholar 

  78. Leuzzi V, Carducci C, Tolve M et al. (2013) Very early pattern of movement disorders in sepiapterin reductase deficiency. Neurology 81:2141–2142

    Google Scholar 

  79. Carducci C, Santagata S, Friedman J et al. (2015) Urine sepiapterin excretion as a new diagnostic marker for sepiapterin reductase deficiency. Mol Genet Metab 115:157–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angels Garcia-Cazorla or Rafael Artuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garcia-Cazorla, A., Artuch, R., Gibson, K.M. (2016). Disorders of Neurotransmission. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics