Skip to main content

Disorders of Cobalamin and Folate Transport and Metabolism

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Patients with disorders of intracellular Cbl metabolism typically have serum Cbl levels within the reference range, although levels may be reduced in the cblF and cblJ disorders. Homocystinuria (Hcy) and hyperhomocysteinaemia, as well as megaloblastic anaemia and neurological disorders, are major clinical findings in patients with disorders of Cbl absorption and transport, as well as those with defects of cellular metabolism that affect synthesis of MeCbl. Inherited disorders of Cbl metabolism are divided into those involving absorption and transport and those involving intracellular utilisation. Severe B12 deficiency in newborn infants, which may occur in breast fed infants born to vegan mothers or those with sub-clinical pernicious anaemia, can result in a disorder that ranges from an elevation in serum concentration of propionylcarnitine detected by newborn screening, to one presenting with severe neonatal encephalopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manoli I, Venditti CP (2005) Methylmalonic aciduria. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) GeneReviews [Internet]. Seattle, Washington, University of Seattle 1993-2015. Aug 16 [updated 2010 Sep 28]

    Google Scholar 

  2. Froese DS, Gravel RA (2010) Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes. Expert Rev Mol Med 12:e37

    Google Scholar 

  3. Watkins D, Rosenblatt DS (2011) Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C (Sem Med Genet) 157:33–44

    Google Scholar 

  4. Watkins D, Venditti CP, Rosenblatt DS (2014) Vitamins: cobalamin and folate. In: Rosenberg RN, Pascual JN (eds) Rosenberg’s molecular and genetic basis of neurological and psychiatric disease, 5th edn. Academic Press, London, pp 521–529

    Google Scholar 

  5. Carmel R, Watkins D, Rosenblatt DS (2014) Megaloblastic anemia. In: Orkin SH, Ginsburg D, Nathan DA et al. (eds) Nathan and Oski’s hematology of infancy and childhood, 8th edn. Saunders, Philadelphia

    Google Scholar 

  6. Tanner SM, Li Z, Perko JD, Öner C et al. (2005) Hereditary juvenile cobalamin deficiency caused by mutations in the intrinsic factor gene. Proc Natl Acad Sci USA 102:4130–4133

    Google Scholar 

  7. Tanner SM, Sturm AC, Baack EC, Liyanarachchi S, de la Chapelle A (2012) Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns. Orphanet J Rare Dis 7:56

    Google Scholar 

  8. Bor M, Çetin M, Aytaç S, Altay C, Nexø E (2005) Nonradioactive vitamin B12 absorption test evaluated in controls and in patients with inherited malabsorption of vitamin B12. Clin Chem 51:2151–2155

    Google Scholar 

  9. Gräsbeck R (2006) Imerslund-Gräsbeck syndrome (selective vitamin B12 malabsorption with proteinuria). Orphanet J Rare Dis 1:17

    Google Scholar 

  10. Wahlstedt-Fröberg V, Pettersson T, Aminoff M, Dugué B, Gräsbeck R (2003) Proteinuria in cubilin-deficient patients with selective vitamin B12 malabsorption. Pediatr Nephrol 18:417–421

    Google Scholar 

  11. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nature Rev Mol Cell Biol 3:258–268

    Google Scholar 

  12. Aminoff M, Tahvainen E, Gräsbeck R et al. (1995) Selective intestinal malabsorption of vitamin B12 displays recessive mendelian inheritance: assignment of a locus to chromosome 10 by linkage. Am J Hum Genet 57:824–831

    Google Scholar 

  13. Carmel R (2003) Mild transcobalamin I (haptocorrin) deficiency and low serum cobalamin concentrations. Clin Chem 49:1367–1374

    Google Scholar 

  14. Carmel R, Parker J, Kelman Z (2009) Genomic mutations associated with mild and severe deficiencies of transcobalamin I (haptocorrin) that cause mildly and severely low serum cobalamin levels. Br J Haematol 147:386–391

    Google Scholar 

  15. Lin JC, Borregaard N, Liebman HA, Carmel R (2001) Deficiency of specific granule proteins R binder/transcobalamin I and lactoferrin, in plasma and saliva: a new disorder. Am J Med Genet 100:145–151

    Google Scholar 

  16. Trakadis YJ, Alfares A, Bodamer OA et al. (2014) Update on transcobalamin deficiency: clinical presentation, treatment and outcome. J Inherit Metab Dis 37:1120–1128

    Google Scholar 

  17. Schiff M, Ogier de Baulny H, Bard G et al. (2010) Should transcobalamin deficiency be treated aggressively? J Inherit Metab Dis 33:223–229

    Google Scholar 

  18. Rosenblatt DS, Hosack A, Matiaszuk N (1987) Expression of transcobalamin II by amniocytes. Prenatal Diagnosis 7:35–39

    Google Scholar 

  19. Nexø E, Christensen AL, Petersen TE, Fedosov SN (2000) Measurement of transcobalamin by ELISA. Clin Chem 46:1643–1649

    Google Scholar 

  20. Quadros EV, Lai SC, Nakayama Y et al. (2010) Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound vitamin B12. Hum Mut 31:924–929

    Google Scholar 

  21. Karth P, Singh R, Kim J, Costakos D (2012) Bilateral central retinal artery occlusions in an infant with hyperhomocysteinemia. J AAPOS 16:398–400

    Google Scholar 

  22. Pangilinan F, Mitchell A, VanderMeer J et al. (2010) Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects. J Med Genet 47:677–685

    Google Scholar 

  23. Rutsch F, Gailus S, Miousse IR et al. (2009) Identification of a putative lysosomal cobalamin exporter mutated in the cblF inborn error of vitamin B12 metabolism. Nature Genet 41:234–239

    Google Scholar 

  24. Gailus S, Suormala T, Malerczyk-Aktas AG et al. (2010) A novel mutation in LMBRD1 causes the cblF defect of vitamin B12 metabolism in a Turkish patient. J Inherit Metab Dis 33:17–24

    Google Scholar 

  25. Miousse IR, Watkins D, Rosenblatt DS (2011) Novel splice mutations and a large deletion in three patients with the cblF inborn error of vitamin B12 metabolism. Mol Genet Metab 102:505–507

    Google Scholar 

  26. Rutsch F, Gailus S, Suormala T, Fowler B (2010) LMBRD1: the gene for the cblF defect of vitamin B12 metabolism. J Inherit Metab Dis 33:17–24

    Google Scholar 

  27. Coelho D, Kim JC, Miousse IR et al. (2012) Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nature Genet 44:1152–1155

    Google Scholar 

  28. Kim JC, Lee NC, Hwu PWL et al. (2012) Late onset of symptoms in an atypical patient with the cblJ inborn error of vitamin B12 metabolism: diagnosis and novel mutation revealed by exome sequencing. Mol Genet Metab 107:664–668

    Google Scholar 

  29. Takeichi T, Hsu CK, Yang HS et al. (2015) Progressive hyperpigmentation in a Taiwanese child due to an inborn error of vitamin B12 metaboilism (cblJ). Br J Dermatol 172:1111–1115

    Google Scholar 

  30. Lerner-Ellis JP, Tirone JC, Pawelek PD et al. (2006) Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nature Genet 38:93–100

    Google Scholar 

  31. Lerner-Ellis JP, Anastasio N, Liu J et al. (2009) Spectrum of mutations in MMACHC, allelic expression, and evidence for genotype-phenotype correlations. Hum Mutat 30:1072–1081

    Google Scholar 

  32. Fischer S, Huemer M, Baumgartner M et al. (2014) Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis 37:831–840

    Google Scholar 

  33. Carrillo-Carrasco N, Chandler RJ, Venditti CP (2012) Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentation, diagnosis and management. J Inherit Metab Dis 35:91–102

    Google Scholar 

  34. Profitlich LE, Kirmse B, Wasserstein MP, Diaz GA, Srivastava S (2009) High prevalence of structural heart disease in children with cblC-type methylmalonic aciduria and homocystinuria. Mol Genet Metab 98:344–348

    Google Scholar 

  35. Liu MY, Yang YL, Chang YC et al. (2010) Mutation spectrum of MMACHC in Chinese patients with combined methylmalonic aciduria and homocystinuria. J Hum Genet 55:621–626

    Google Scholar 

  36. Carrillo-Carrasco N, Sloan J, Valle D, Hamosh A, Venditti CP (2009) Hydroxocobalamin dose escalation improves metabolic control in cblC. J Inherit Metab Dis 32:728–731

    Google Scholar 

  37. Carrillo-Carrasco N, Venditti CP (2012) Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis 35:103–114

    Google Scholar 

  38. Yu HC, Sloan JL, Scharer G et al. (2013) An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet 93:506–514

    Google Scholar 

  39. Gérard M, Morin G, Bourillon A et al. (2015) Multiple congenital anomalies in two boys with mutations in HCFC1 and cobalamin disorder. Eur J Med Genet 58:148–153

    Google Scholar 

  40. Suormala T, Baumgartner MR, Coelho D et al. (2004) The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem 279:42742–42749

    Google Scholar 

  41. Coelho D, Suormala T, Stucki M et al. (2008) Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med 358:1454–1464

    Google Scholar 

  42. Miousse IR, Watkins D, Coelho D et al. (2009) Clinical and molecular heterogeneity in patients with the cblD inborn error of cobalamin metabolism. J Pediatr 154:551–556

    Google Scholar 

  43. Dobson CM, Wai T, Leclerc D et al. (2002) Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum Mol Genet 11:3361–3369

    Google Scholar 

  44. Dobson CM, Wai T, Leclerc D et al. (2002) Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci USA 99:15554–15559

    Google Scholar 

  45. Lerner-Ellis JP, Dobson CM, Wai T et al. (2004) Mutations in the MMAA gene in patients with the cblA disorder of vitamin B12 metabolism. Hum Mutat 24:509–516

    Google Scholar 

  46. Lerner-Ellis JP, Gradinger AB, Watkins D et al. (2006) Mutation and biochemical analysis of patients belonging to the cblB complementation class of vitamin B12-dependent methylmalonic aciduria. Mol Genet Metab 87:219–225

    Google Scholar 

  47. Erdogan E, Nelson GJ, Rockwood AL, Frank EL (2010) Evaluation of reference intervals for methylmalonic acid in plasma/serum and urine. Clin Chim Acta 411:1827–1829

    Google Scholar 

  48. Fowler B, Leonard JV, Baumgartner MR (2008) Causes and diagnostic approaches to methylmalonic acidurias. J Inherit Metab Dis 31:350–360

    Google Scholar 

  49. Hörster F, Baumgartner MR, Viardot C et al. (2007) Long-term outcome in methylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA, cblB). Pediatr Res 62:225–230

    Google Scholar 

  50. Cosson MA, Benoist JF, Touati G et al. (2009) Long-term outcome in methylmalonic aciduria: a series of 30 French patients. Mol Genet Metab 97:172–178

    Google Scholar 

  51. Niemi AK, Kim IK, Krueger CE et al. (2015) Treatment of methylmalonic acidemia by liver or combined liver-kidney transplantation. J Pediatr 166:1455–1461

    Google Scholar 

  52. Huemer M, Bürer C, Jesina P et al. (2014) Clinical onset and course, response to treatment and outcome in 24 patients with the cblE or cblG remethylation defect complemented by genetic and in vitro enzyme study data. J Inherit Metab Dis 38:957–967

    Google Scholar 

  53. Zavadakova P, Fowler B, Suormala T et al. (2005) cblE type of homocystinuria due to methionine synthase reductase deficiency: functional correction by minigene expression. Hum Mutat 25:239–247

    Google Scholar 

  54. Watkins D, Ru M, Hwang HY et al. (2002) Hyperhomocysteinemia due to methionine synthase deficiency, cblG: structure of the MTR gene, genotype diversity, and recognition of a common mutation, P1173L. Am J Hum Genet 71:143–153

    Google Scholar 

  55. Matherly LH, Goldman ID (2003) Membrane transport of folates. Vitamins & Hormones 66:403–456

    Google Scholar 

  56. Qiu A, Jansen M, Sakaris A et al. (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928

    Google Scholar 

  57. Zhao R, Min SH, Wang Y et al. (2009) A role for the proton coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. J Biol Chem 284:4267–4274

    Google Scholar 

  58. Geller J, Kronn D, Jayabose S, Sandoval C (2002) Hereditary folate malabsorption. Family report and review of the literature. Medicine 81:51–68

    Google Scholar 

  59. Borzutzky A, Crompton B, Bergmann AK et al. (2009) Reversible severe combined immunodeficiency phenotype secondary to a mutation of the proton-coupled transporter. Clin Immunol 133:287–294

    Google Scholar 

  60. Ramaekers VT, Häusler M, Opladen T, Heimann G, Blau N (2002) Psychomotor retardation, spastic paraplegia, cerebellar ataxia and dyskinesia associated with low 5-methyltetrahydrofolate in cerebrospinal fluid: a novel neurometabolic condition responding to folinic acid substitution. Neuropediatrics 33:301–308

    Google Scholar 

  61. Ramaekers VT, Blau N (2004) Cerebral folate deficiency. Dev Med Child Neurol 46:843–851

    Google Scholar 

  62. Steinfeld R, Grapp M, Kraetzner R et al. (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Google Scholar 

  63. Cario H, Bode H, Debatin KM, Opladen T, Schwarz K (2009) Congenital null mutations of the FOLR1 gene; a progressive neurologic disease and its treatment. Neurology 73:2127–2129

    Google Scholar 

  64. Keller MD, Ganesh J, Heltzer M et al. (2013) Severe combined immunodeficiency resulting from mutations in MTHFD1. Pediatrics 131:e629–e634

    Google Scholar 

  65. Burda P, Kuster A, Hjalmarson O et al. (2015) Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation and response to folic and folinic acid treatment. J Inherit Metab Dis 38:863–872

    Google Scholar 

  66. Field MS, Kamynina E, Watkins D, Rosenblatt DS, Stover PJ (2015) Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci USA 112:400–405

    Google Scholar 

  67. Watkins D, Schwartzentruber JA, Ganesh J et al. (2011) Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet 48:590–592

    Google Scholar 

  68. Banka S, Blom HJ, Walter J et al. (2011) Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency. Am J Hum Genet 88:216–225

    Google Scholar 

  69. Cario H, Smith DEC, Blom H et al. (2011) Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet 88:226–231

    Google Scholar 

  70. Erbe RW (1986) Inborn errors of folate metabolism. In: Blakley RL, Benkovic SJ (eds) Folates and pterins. Nutritional, pharmacological and physiological aspects, vol 3. John Wiley & Sons, New York, pp 413–465

    Google Scholar 

  71. Hilton JF, Christensen KE, Watkins D et al. (2003) The molecular basis of glutamate formiminotransferase deficiency. Hum Mut 22:67–73

    Google Scholar 

  72. Ueland PM, Rozen R (2005) MTHFR polymorphisms and disease. Landes Bioscience, Georgetown, Texas

    Google Scholar 

  73. Thomas MA, Rosenblatt DS (2005) Severe methylenetetrahydrofolate reductase deficiency. In: Ueland PM, Rozen R (eds) MTHFR polymorphisms and disease. Landes Bioscience, Georgetown, Texas, pp 41–53

    Google Scholar 

  74. Burda P, Schäfer A, Suormala T et al. (2015) Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: molecular genetic and enzymatic characterization of 76 patients. Hum Mut 36:611–621

    Google Scholar 

  75. Froese DS, Huemer M, Suormala T et al. (2016) Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum Mut 37:427–438

    Google Scholar 

  76. Selzer RR, Rosenblatt DS, Laxova R, Hogan K (2003) Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 349:45–50

    Google Scholar 

  77. Strauss KA, Morton DH, Puffenberger EG et al. (2007) Prevention of brain disease from severe methylenetetrahydrofolate reductase deficiency. Mol Genet Metab 91:165–175

    Google Scholar 

  78. Schiff M, Benoist JF, Tilea B et al. (2010) Isolated remethylation disorders: do our treatments benefit patients? J Inherit Metab Dis 34:137–145

    Google Scholar 

  79. Knowles L, Morris AAM, Walter JH (2016) Treatment with mefolinate (5-methyltetrahydrofolate), but not folic acid or folinic acid, leads to measurable 5-methyltetrahydrofolate in cerebrospinal fluid in methylenetetrahydrofolate reductase deficiency. JIMD Rep Epub ahead of print PMID: 26898294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Watkins , David S. Rosenblatt or Brian Fowler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Watkins, D., Rosenblatt, D.S., Fowler, B. (2016). Disorders of Cobalamin and Folate Transport and Metabolism. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics