Skip to main content

Nonketotic Hyperglycinemia (Glycine Encephalopathy) and Lipoate Deficiency Disorders

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Nonketotic hyperglycinemia (NKH) is caused by defective glycine cleavage enzyme activity. Classic NKH is caused by mutations in protein coding genes (GLDC and AMT). Disorders of lipoate synthesis and transport are caused by mutations in LIAS, BOLA3, NFU1, GLRX5, ISCA2, IBA57, LIPT1, and LIPT2 and can affect glycine metabolism referred to as variant NKH. Patients with the severe form of classic NKH have minimal development and develop therapy resistant epilepsy. Patients with the attenuated form of classic NKH make variable developmental progress, and present with attention deficits, hyperactivity, chorea, and episodic lethargy. Treatment consists of reduction of glycine levels with benzoate and sometimes diet, and of blocking the excitatory effect of glycine on NMDA receptors with either dextromethorphan or ketamine. Therapy is most effective in patients with attenuated NKH where it can improve development particularly when treatment is initiated early. High levels of CSF glycine and presence of brain malformations are indicative of severe classic NKH, whereas low CSF:plasma glycine ratios, onset after 4 months, or absence of epilepsy are indicators of attenuated classic NKH. A specific pattern of diffusion restriction on brain MRI is nearly always present in the first months of life and is useful in distinction with non-genetic causes of elevated CSF glycine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hennermann JB, Berger J-M, Grieben U et al. (2012) Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 35:253–261

    Google Scholar 

  2. Swanson MA, Coughlin CR II, Scharer GH et al. (2015) Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann Neurol 78:606–618

    Google Scholar 

  3. Hoover-Fong JE, Shah S, Van Hove JLK et al. (2004) Natural history of nonketotic hyperglycinemia in 65 patients. Neurology 63:1847–1853

    Google Scholar 

  4. Dinopoulos A, Matsubara Y, Kure S (2005) Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 86:61–69

    Google Scholar 

  5. Korman S H, Boneh A, Ichinohe A et al. (2004) Persistent NKH with transient or absent symptoms and a homozygous GLDC mutation. Ann Neurol 56:139–143

    Google Scholar 

  6. Baker PR II, Friederich MW, Swanson MA et al. (2014) Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137:366–379

    Google Scholar 

  7. Mayr JA, Zimmermann FA, Fauth C et al. (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89:792–797

    Google Scholar 

  8. Mayr JA, Feichtinger RG, Tort F et al. (2014) Lipoic acid biosynthesis defects. J Inherit Metab Dis 37:553–563

    Google Scholar 

  9. Habarou F, Hamel Y, Grisel C et al. (2015) Encephalopathy, combined deficiency of alpha-ketoacid dehydrogenases and hyperglycinemia associated with LIPT2 mutations: a novel lipoic acid biosynthesis defect. J Inherit Metab Dis 38 Suppl 1:S48–S49

    Google Scholar 

  10. Tort F, Ferrer-Cortès X, Thió M et al. (2014) Mutations in the lipoyltransferase LIPT1 gene cause a fatal disease associated with a specific lipoylation defect of the 2-ketoacid dehydrogenase complexes. Hum Mol Genet 23:1907–1915

    Google Scholar 

  11. Soreze Y, Boutron A, Habarou F et al. (2013) Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase. Orphanet Rare Dis J 17:192

    Google Scholar 

  12. Cameron JM, Janer A, Levandovskiy V et al. (2011) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes, Am J Hum Genet 89:486–495

    Google Scholar 

  13. Navarro-Sastre A, Tort F, Stehling O et al. (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89:656–667

    Google Scholar 

  14. Ahting U, Mayr JA, Vanlander AV et al. (2015) Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency. Front Genet 6:123

    Google Scholar 

  15. Al-Hassnan ZN, Al-Dosary M, Alfadhel M et al. (2015) ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. J Med Genet 52:186–194

    Google Scholar 

  16. Ajit Bolar N, Vanlander AV, Wilbrecht C et al. (2013) Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum Mol Genet 22:2590–2602

    Google Scholar 

  17. Debray FG, Stümpfig C, Stevanin G et al. (2015) Mutation of the iron-sulfur cluster gene IBA57 causes fatal infantile leukodystrophy. J Inherit Metab Dis 38:1147–1153

    Google Scholar 

  18. Lossos A, Stümpfig C, Stevanin G et al. (2015) Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia. Neurology 84:659–667

    Google Scholar 

  19. Van Hove JLK, Vande Kerckhove K, Hennermann JB et al. (2005) Benzoate treatment and the glycine index in nonketotic hyperglycinaemia. J Inherit Metab Dis 28:651–663

    Google Scholar 

  20. Ichinohe A, Kure S, Mikawa S et al. (2004) Glycine cleavage system in neurogenic regions. Eur J Neurosci 19:2365–2370

    Google Scholar 

  21. Agamanolis DP, Potter JL, Herrick MK et al. (1982) The neuropathology of glycine encephalopathy: a report of five cases with immunohistochemical and ultrastructural observations. Neurology 32:975–985

    Google Scholar 

  22. Iwama H, Takahashi K, Kure S et al. (1997) Depletion of cerebral D-serine in non-ketotic hyperglycinemia: possible involvement of glycine cleavage system in control of endogenous D-serine. Biochem Biophys Res Comm 231:793–796

    Google Scholar 

  23. Pai YJ, Leung K-Y, Savery D et al. (2015) Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Comm 6:6388

    Google Scholar 

  24. Kure S, Kato K, Dinopoulos A et al. (2006) Comprehensive mutation analysis of GLDC, AMT and GCSH in nonketotic hyperglycinemia. Hum Mutat 27:343–352

    Google Scholar 

  25. Kanno J, Hutchin T, Kamada F et al. (2006) Genomic deletion within GLDC is a major cause of non-ketotic hyperglycinaemia. J Med Genet 44:e69

    Google Scholar 

  26. Tan ES, Wiley V, Carpenter K et al. (2007) Non-ketotic hyperglycinemia is usually not detectable by tandem mass spectrometry newborn screening. Mol Genet Metab 90:446–448

    Google Scholar 

  27. Korman SH, Gutman A (2002) Pitfalls in the diagnosis of glycine encephalopathy (non-ketotic hyperglycinemia). Dev Med Child Neurol 44:712–720

    Google Scholar 

  28. Applegarth DA, Toone JR, Rolland MO et al. (2000) Non-concordance of CVS and liver glycine cleavage enzyme in three families with non-ketotic hyperglycinemia (NKH) leading to false negative prenatal diagnoses. Prenat Diagn 20:367–370

    Google Scholar 

  29. Kure S, Korman SH, Kanno J et al. (2006) Rapid diagnosis of glycine encephalopathy by 13C-glycine breath test. Ann Neurol 59:862–867

    Google Scholar 

  30. Aburahma S, Khassawneh M, Griebel M et al. (2011) Pitfalls in measuring cerebrospinal fluid glycine levels in infants with encephalopathy. J Child Neurol 26:703–706

    Google Scholar 

  31. Boneh A, Allan S, Mendelson D et al. (2008) Clinical, ethical and legal considerations in the treatment of newborns with non-ketotic hyperglycinaemia. Mol Genet Metab 94:143–147

    Google Scholar 

  32. Wolff JA, Kulovich S, Yu AL et al. (1986) The effectiveness of benzoate in the management of seizures in nonketotic hyperglycinemia. Am J Dis Child 140:596–602

    Google Scholar 

  33. Van Hove JLK, Kishnani P, Muenzer J et al. (1995) Benzoate therapy and carnitine deficiency in non-ketotic hyperglycinemia. Am J Med Genet 59:444–453

    Google Scholar 

  34. Schmitt B, Steinmann B, Gitzelmann R et al. (1993) Nonketotic hyperglycinemia: clinical and electrophysiologic effects of dextromethorphan, an antagonist of the NMDA receptor. Neurology 43:421–424

    Google Scholar 

  35. Deutsch SI, Rosse RB, Mastropaolo J (1998) Current status of NMDA antagonist interventions in the treatment of nonketotic hyperglycinemia. Clin Neuropharmacol 21:71–79

    Google Scholar 

  36. Harty TP, Rogawski MA (2000) Felbamate block of recombinant N-methyl-D-aspartate receptors: selectivity for the NR2B subunit. Epilepsy Res 39:47–55

    Google Scholar 

  37. Tekgul H, Serdaroğlu G, Karapinar B et al. (2006) Vigabatrin caused rapidly progressive deterioration in two cases with early myoclonic encephalopathy associated with nonketotic hyperglycinemia. J Child Neurol 21:82–84

    Google Scholar 

  38. Tsuyusaki Y, Shimbo H, Wada T et al. (2012) Paradoxical increase in seizure frequency with valproate in nonketotic hyperglycinemia. Brain Dev 34:72–75

    Google Scholar 

  39. Cusmai R, Martinelli D, Moavero R et al. (2012) Ketogenic diet in early myoclonic encephalopathy due to non ketotic hyperglycinemia, Eur J Paediatr Neurol 16:509–513

    Google Scholar 

  40. Tsao C-Y (2010) The efficacy of vagus nerve stimulation in intractable epilepsy associated with nonketotic hyperglycinemia in two children. J Child Neurol 25:375–378

    Google Scholar 

  41. Ramirez N, Flynn JM, Csalduc F et al. (2012) Musculoskeletal manifestations of neonatal nonketotic hyperglycinemia. J Child Orthop 6:199–203

    Google Scholar 

  42. Bjoraker KJ, Swanson MA, Coughlin CR 2nd et al. (2016) Neurodevelopmental outcome and treatment efficacy of benzoate and dextromethorphan in siblings with attenuated nonketotic hyerglycinemia. J Pediatr 170:234–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johann L.K. Van Hove , Julia B. Hennermann or Curtis R. Coughlin II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Hove, J.L., Hennermann, J.B., Coughlin II, C.R. (2016). Nonketotic Hyperglycinemia (Glycine Encephalopathy) and Lipoate Deficiency Disorders. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics