Skip to main content

Disorders of Ornithine and Proline Metabolism

  • Chapter
Inborn Metabolic Diseases

Zusammenfassung

Hyperornithinaemia due to ornithine aminotransferase (OAT) deficiency results in gyrate atrophy of the choroid and retina (GA) and leads to progressive visual loss. Treatment includes an arginine-restricted diet and a trial of pyridoxine (vitamin B6) which, in some patients, can slow visual loss and chorioretinal degeneration. Rarely, neonates with OAT-deficiency present with hyperammonaemia and require treatment with arginine supplementation. In the hyperornithinaemia, hyperammonaemia, and homocitrullinuria (HHH) syndrome clinical manifestations are variable and may be related to intermittent episodes of hyperammonaemia. Progressive spastic paraparesis is often a late complication. Deficient transport of ornithine into the mitochondria impairs the urea cycle and results in episodic hyperammonaemia, hyperornithinaemia and increased urinary excretion of homocitrulline and orotic acid. Treatment includes protein restriction, citrulline or arginine supplementation and in some cases ammonia scavengers. P5C synthetase (P5CS) deficiency is a rare recessive neurocutaneous syndrome with cutis laxa, developmental delay, joint laxity and cataracts, but mutations affecting specific residues may also cause autosomal dominant cutis laxa as well as adult onset autosomal dominant spastic paraplegia. The metabolic phenotype includes mild hyperammonaemia, hypoornithinaemia, hypocitrullinaemia, hypoargininaemia and hypoprolinaemia. Deficiency of P5C reductase (P5CR) associated to mutations in PYCR1 causes autosomal recessive cutis laxa with progeroid features, while mutations in PYCR2, a paralog of PYCR1, cause microcephaly and hypomyelination. Both disorders show no apparent metabolic phenotype. The phenotypic consequences of Hyperprolinaemia type I are uncertain, while Hyperprolinaemia type II appears to be associated with a disposition to recurrent seizures. Prolidase deficiency causes skin lesions and recalcitrant ulceration in addition to other features, such as impaired psychomotor development and recurrent infections. The severity of clinical expression is highly variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valle D, Simell O (2014) The Hyperornithinemias. In: Valle D, Beaudet AL, Vogelstein B et al. (eds) McGraw-Hill, New York, NY http://ommbid.mhmedical.com/content.aspx?bookid=971&Sectionid=62674636. Accessed April 10, 2016

  2. Valayannopoulos V, Boddaert N, Mention K et al. (2009) Secondary creatine deficiency in ornithine delta-aminotransferase deficiency. Mol Genet Metab 97:109–113

    Google Scholar 

  3. Cleary MA, Dorland L, de Koning TJ et al. (2005) Ornithine aminotransferase deficiency: diagnostic difficulties in neonatal presentation. J Inherit Metab Dis 28:673–679

    Google Scholar 

  4. Wang T, Lawler AM, Steel G et al. (1995) Mice lacking ornithine-d-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet 11:185–190

    Google Scholar 

  5. Peltola KE, Jaaskelainen S, Heinonen OJ et al. (2002) Peripheral nervous system in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology 59:735–740

    Google Scholar 

  6. Kaiser-Kupfer MI, Caruso RC, Valle D, Reed GF (2004) Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy. Arch Ophthalmol 122:982–984

    Google Scholar 

  7. Kaiser-Kupfer MI, Caruso RC, Valle D (2002) Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch Ophthalmol 120:146–153

    Google Scholar 

  8. Santinelli R, Costagliola C, Tolone C et al. (2004) Low-protein diet and progression of retinal degeneration in gyrate atrophy of the choroid and retina: a twenty-six-year follow-up. J Inherit Metab Dis 27:187–196

    Google Scholar 

  9. Heinänen K, Näntö-Salonen K, Komu M et al. (1999) Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest 29:1060–1065

    Google Scholar 

  10. Martinelli D, Diodato D, Ponzi E et al. (2015) The hyperornithinema-hyperammonemia-homocitrullinuria syndrome. Orphanet J Rare Dis 10:29

    Google Scholar 

  11. Debray FG, Lambert M, Lemieux B et al. (2008) Phenotypic variability among patients with hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome homozygous for the delF188 mutation in SLC25A15. J Med Genet 45:759–764

    Google Scholar 

  12. Morini C, Capozzi P, Boenzi S et al. (2009) Retinal degeneration. Ophthalmology 116:1593

    Google Scholar 

  13. Camacho JA, Obie C, Biery B et al. (1999) Hyperornithiemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 22:151–158

    Google Scholar 

  14. Tessa A, Fiermonte G, Dionisi-Vici C et al. (2009) Identification of novel mutations in the SLC25A15 gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: a clinical, molecular, and functional study. Hum Mutat 30:741–748

    Google Scholar 

  15. Miyamoto T, Kanazawa N, Kato S et al. (2001) Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Hum Genet 46:260–262

    Google Scholar 

  16. Metwalli AA, Lammers WL, Van Boekel MA (1998) Formation of homocitrulline during heating of milk. J Dairy Res 65:579–589

    Google Scholar 

  17. Sokoro AA, Lepage J, Antonishyn N et al. (2010) Diagnosis and high incidence of hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome in northern Saskatchewan. J Inherit Metab Dis 33:S275–81

    Google Scholar 

  18. Shih VE, Mandell R, Herzfeld A (1982) Defective ornithine metabolism in cultured skin fibroblasts from patients with the syndrome of hyperornithinemia, hyperammonemia and homocitrullinuria. Clin Chim Acta 118:149–157

    Google Scholar 

  19. Baumgartner MR, Rabier D, Nassogne MC et al. (2005) Delta1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36

    Google Scholar 

  20. Bicknell LS, Pitt J, Aftimos S et al. (2008) A missense mutation in ALDH18A1, encoding delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186

    Google Scholar 

  21. Wolthuis DF, van Asbeck E, Mohamed M et al. (2014) Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. Eur J Paediatr Neurol 18:511–515

    Google Scholar 

  22. Coutelier M, Goizet C, Durr A et al. (2015) Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 138:2191–2205

    Google Scholar 

  23. Skidmore DL, Chitayat D, Morgan T et al. (2011) Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ¹-pyrroline-5-carboxylate synthase (P5CS). Am J Med Genet A 155A:1848–1856

    Google Scholar 

  24. Fischer-Zirnsak B, Escande-Beillard N, Ganesh J et al. (2015) Recurrent de novo mutations affecting residue Arg138 of pyrroline-5-carboxylate synthase cause a progeroid form of autosomal-dominant cutis laxa. Am J Hum Genet 97:483–492

    Google Scholar 

  25. Panza E, Escamilla-Honrubia JM, Marco-Marín C et al. (2015) ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain Jan;139(Pt 1):e3. doi:10.1093/brain/awv247

    Google Scholar 

  26. Baumgartner MR, Hu C-A, Almashanu S et al. (2000) Hyperammonemia with reduced ornithine, citrulline, arginine and proline: A new inborn error caused by a mutation in the gene encoding ∆1-pyrroline-5-carboxylate synthase. Hum Molec Genet 9:2853–2858

    Google Scholar 

  27. Reversade B, Escande-Beillard N, Dimopoulou A et al. (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021

    Google Scholar 

  28. Guernsey DL, Jiang H, Evans SC et al. (2009) Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 85:120–129

    Google Scholar 

  29. Dimopoulou A, Fischer B, Gardeitchik T et al. (2013) Genotype-phenotype spectrum of PYCR1-related autosomal recessive cutis laxa. Mol Genet Metab 110:352–361

    Google Scholar 

  30. Zampatti S, Castori M, Fischer B et al. (2012) De Barsy Syndrome: a genetically heterogeneous autosomal recessive cutis laxa syndrome related to P5CS and PYCR1 dysfunction. Am J Med Genet A.158A:927–931

    Google Scholar 

  31. Nakayama T, Al-Maawali A, El-Quessny M et al. (2015) Mutations in PYCR2, encoding pyrroline-5-carboxylate reductase 2, cause microcephaly and hypomyelination. Am J Hum Genet 96:709–719

    Google Scholar 

  32. Phang JM, Hu CA, Valle D Phang, James M et al. (2014) Disorders of Proline and Hydroxyproline Metabolism. In: Valle D, Beaudet AL, Vogelstein B et al. (eds) Retrieved September 29, 2015 from http://ommbid.mhmedical.com/content.aspx?bookid=971&Sectionid=62674328

  33. Guilmatre A, Legallic S, Steel G et al. (2010) Type I hyperprolinemia: genotype/phenotype correlations. Hum Mutat 31:961–965

    Google Scholar 

  34. Willis A, Bender HU, Steel G, Valle D (2008) PRODH variants and risk for schizophrenia. Amino Acids 35:673–679

    Google Scholar 

  35. Pontoizeau C, Habarou F, Brassier A et al. (2016) Hyperprolinemia in Type 2 Glutaric Aciduria and MADD-Like Profiles. JIMD Reports 27:39–45

    Google Scholar 

  36. Reid ES, COSgene C, Anderson G, et al. (2016) Mutations in SLC25A22 as a cause of hyperprolinaemia, epilepsy and developmental delay in children. J Inherit Metab Dis 38:S43

    Google Scholar 

  37. Bender HU, Almasham S, Steel G et al. (2005) Functional consequences of PRODH missense mutations. Am J Hum Genet 76:409–420

    Google Scholar 

  38. Mitsubuchi H, Nakamura K, Matsumoto S, Endo F (2014) Biochemical and clinical features of hereditary hyperprolinemia. Pediatr Int 56:492–496

    Google Scholar 

  39. Farrant RD, Walker V, Mills GA et al. (2000) Pyridoxal phosphate deactivation by pyrroline-5-carboxylic acid. Increased risk of vitamin B6 deficiency and seizures in hyperprolinemia type II. J Biol Chem 276:15107–15116

    Google Scholar 

  40. Clayton PT (2006) B6-Responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 29:317–326

    Google Scholar 

  41. Geraghty MT, Vaughn D, Nicholson AJ et al. (1998) Mutations in the delta 1-pyrroline 5-carboxylate dehydrogenase gene cause type II hyperprolinemia. Hum Mol Genet 7:1411–1415

    Google Scholar 

  42. Goodman SI, Solomons CC, Muschenheim F et al. (1968) A syndrome resembling lathyrism associated with iminodipeptiduria. Am J Med 45:152–159

    Google Scholar 

  43. Falik-Zaccai TC, Khayat M, Luder A et al. (2010) A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability. Am J Med Genet [B] 153:46–56

    Google Scholar 

  44. Ferreira C, Wang H (2015) Prolidase Deficiency. In: Pagon RA, Adam MP, Ardinger HH et al. (eds) Gene Reviews [Internet]. Seattle, Washington, University of Washington, Seattle. http://www.ncbi.nlm.nih.gov/books/NBK299584/

  45. Shrinath M, Walter JH, Haeney M et al. (1997) Prolidase deficiency and systemic lupus erythematosus. Arch Dis Child 76:441–444

    Google Scholar 

  46. Jemec GB, Moe AT (1996) Topical treatment of skin ulcers in prolidase deficiency. Pediatr Dermatol 13:58–60

    Google Scholar 

  47. Abela L, Simmons L, Steindl K et al (2016) N8-acetylspermidine as a potential biomarker for Snyder-Robinson syndrome identified by clinical metabolomics. J Inherit Metab Dis 39:131–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias R. Baumgartner , David Valle or Carlo Dionisi-Vici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgartner, M.R., Valle, D., Dionisi-Vici, C. (2016). Disorders of Ornithine and Proline Metabolism. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics