Skip to main content

Disorders of Tyrosine Metabolism

  • Chapter

Zusammenfassung

Five inherited disorders of tyrosine metabolism are known. Hereditary tyrosinaemia type I is characterised by progressive liver disease and renal tubular dysfunction with rickets. Hereditary tyrosinaemia type II (Richner-Hanhart syndrome) presents with keratitis and blistering lesions of the palms and soles and neurological complications. Tyrosinaemia type III may be asymptomatic or associated with mental retardation. Hawkinsinuria may be asymptomatic or present with failure to thrive and metabolic acidosis in infancy. In alkaptonuria, symptoms of osteoarthritis usually appear in adulthood. Other inborn errors of tyrosine metabolism include oculocutaneous albinism caused by a deficiency of melanocyte-specific tyrosinase, converting tyrosine into DOPA-quinone; deficiency of tyrosine hydroxylase, the first enzyme in the synthesis of dopamine from tyrosine; and deficiency of aromatic L-amino acid decarboxylase, which also affects tryptophan metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spronsen v FJ, Thomasse Y, Smit GP et al. (1994) Hereditary tyrosinemia type I: a new clinical classification with difference in prognosis on dietary treatment. Hepatology 20:1187–1191

    Google Scholar 

  2. Weinberg AG, Mize CE, Worthen HG (1976) The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J Pediatr 88:434–438

    Google Scholar 

  3. Forget S, Patriquin HB, Dubois J et al. (1999) The kidney in children with tyrosinemia: sonographic, CT and biochemical findings. Pediatr Radiol 29:104–108

    Google Scholar 

  4. Santra S, Preece MA, Hulton SA, McKiernan PJ (2008) Renal tubular function in children with tyrosinaemia type I treated with nitisinone. J Inherit Metab Dis 31:399–402

    Google Scholar 

  5. Mitchell G, Larochelle J, Lambert M et al. (1990) Neurologic crises in hereditary tyrosinemia. N Engl J Med 322:432–437

    Google Scholar 

  6. Arora N, Stumper O, Wright J et al. (2006) Cardiomyopathy in tyrosinaemia type I is common but usually benign. J Inherit Metab Dis 29:54–57

    Google Scholar 

  7. Baumann U, Preece MA, Green A et al. (2005) Hyperinsulinism in tyrosinaemia type I. J Inherit Metab Dis 28:131–135

    Google Scholar 

  8. Jorquera R, Tanguay RM (1997) The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem Biophys Res Commun 232:42–48

    Google Scholar 

  9. Bliksrud YT, Ellingsen A, Bjørås M (2013) Fumarylacetoacetate inhibits the initial step of the base excision repair pathway: implication for the pathogenesis of tyrosinemia type I. J Inherit Metab Dis 36:773–778

    Google Scholar 

  10. Endo F, Sun MS (2002) Tyrosinaemia type I and apoptosis of hepatocytes and renal tubular cells. J Inherit Metab Dis 25:227–234

    Google Scholar 

  11. Tanguay RM, Jorquera R, Poudrier J, St Louis M (1996) Tyrosine and its catabolites: from disease to cancer. Acta Biochim Pol 43:209–216

    Google Scholar 

  12. Demers SI, Russo P, Lettre F, Tanguay RM (2003) Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 34:1313–1320

    Google Scholar 

  13. Roth KS, Carter BE, Higgins ES (1991) Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 196:428–431

    Google Scholar 

  14. Giger U, Meyer UA (1983) Effect of succinylacetone on heme and cytochrome P450 synthesis in hepatocyte culture. FEBS Lett 153:335–338

    Google Scholar 

  15. Tschudy DP, Hess A, Frykholm BC, Blease BM (1982) Immunosuppressive activity of succinylacetone. J Lab Clin Med 99:526–532

    Google Scholar 

  16. Larochelle J, Alvarez F, Bussières JF et al (2014), Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab 107:49–54

    Google Scholar 

  17. Mayorandan S, Meyer U, Gokcay G et al (2014) Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis 9:107

    Google Scholar 

  18. De Jesús VR, Adam BW, Mandel D, Cuthbert CD, Matern D (2014) Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. Mol Genet Metab 113:67–75

    Google Scholar 

  19. Angileri F, Bergeron A, Morrow G et al (2015) Geographical and ethnic distribution of mutations of the fumarylacetoacetate hydrolase gene in hereditary tyrosinemia type 1. JIMD Rep 19:43–58

    Google Scholar 

  20. Poudrier J, Lettre F, St Louis M, Tanguay RM (1999) Genotyping of a case of tyrosinaemia type I with normal level of succinylacetone in amniotic fluid. Prenat Diagn 19:61–63

    Google Scholar 

  21. Stenson PD, Mort M, Ball EV et al. (2014) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9

    Google Scholar 

  22. Cassiman D, Zeevaert R, Holme E, Kvittingen EA, Jaeken J (2009) A novel mutation causing mild, atypical fumarylacetoacetase deficiency (Tyrosinemia type I): a case report. Orphanet J Rare Dis 4:28

    Google Scholar 

  23. Rootwelt H, Brodtkorb E, Kvittingen EA (1994) Identification of a frequent pseudodeficiency mutation in the fumarylacetoacetase gene, with implications for diagnosis of tyrosinemia type I. Am J Hum Genet 55:1122–1127

    Google Scholar 

  24. de Laet C, Dionisi-Vici C, Leonard JV et al. (2013) Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 8:8

    Google Scholar 

  25. Holme E, Lindstedt ES (2000) Nontransplant treatment of tyrosinemia. Clin Liver Dis 4:805–814

    Google Scholar 

  26. Hall MG, Wilks MF, Provan WM et al. (2001) Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol 52:169–177

    Google Scholar 

  27. De Laet C, Terrones MV, Jaeken J et al. (2011) Neuropsychological outcome of NTBC-treated patients with tyrosinaemia type 1. Dev Med Child Neurol 53:962–964

    Google Scholar 

  28. Bendadi F, de Koning TJ, Visser G et al. (2014)Impaired cognitive functioning in patients with tyrosinemia type I receiving nitisinone. J Pediatr 164:398–401

    Google Scholar 

  29. Mohan N, McKiernan P, Preece MA et al. (1999) Indications and outcome of liver transplantation in tyrosinaemia type 1. Eur J Pediatr 158:S49–S54

    Google Scholar 

  30. Laine J, Salo MK, Krogerus L et al. (1995) The nephropathy of type I tyrosinemia after liver transplantation. Pediatr Res 37:640–645

    Google Scholar 

  31. Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN (2014) Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis 37:745–752

    Google Scholar 

  32. Kassel R, Sprietsma L, Rudnick DA (2015) Pregnancy in an NTBC-treated patient with hereditary tyrosinemia type I. J Pediatr Gastroenterol Nutr 60:e5–e7

    Google Scholar 

  33. Vanclooster A, Devlieger R, W et al. (2012) Pregnancy during nitisinone treatment for tyrosinaemia type I: first human experience. JIMD Rep 5:27–33

    Google Scholar 

  34. Rabinowitz LG, Williams LR, Anderson CE et al. (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269

    Google Scholar 

  35. Duchatelet S, Hovnanian A (2015) Olmsted syndrome: clinical, molecular and therapeutic aspects. Orphanet J Rare Dis 10:33

    Google Scholar 

  36. Fois A, Borgogni P, Cioni M et al. (1986) Presentation of the data of the Italian registry for oculocutaneoustyrosinaemia. J Inherit Metab Dis 9:262–264

    Google Scholar 

  37. Bohnert A, Anton-Lamprecht I (1982) Richner-Hanhart syndrome: ultrastructural abnormalities of epidermal keratinization indicating a causal relationship to high intracellular tyrosine levels. J Invest Dermatol 72:68–74

    Google Scholar 

  38. Meissner T, Betz RC, Pasternack SM et al. (2008) Richner-Hanhart syndrome detected by expanded newborn screening. Pediatr Dermatol 25:378

    Google Scholar 

  39. Barr DG, Kirk JM, Laing SC (1991) Outcome in tyrosinaemia type II. Arch Dis Child 66:1249–1250

    Google Scholar 

  40. Cerone R, Fantasia AR, Castellano E et al. (2002) Pregnancy and tyrosinaemia type II. J Inherit Metab Dis 25:317–318

    Google Scholar 

  41. Ellaway CJ, Holme E, Standing S et al. (2001) Outcome of tyrosinaemia type III. J Inherit Metab Dis 24:824–832

    Google Scholar 

  42. Rüetschi U, Cerone R, Pérez CC et al. (2000) Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III. Hum Genet 106:654–662

    Google Scholar 

  43. Rice DN, Houston IB, Lyon IC et al. (1998) Transient neonatal tyrosinaemia. J Inherit Metab Dis 12:13–22

    Google Scholar 

  44. Mamunes P, Prince PE, Thornton NH et al. (1976) Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics 57:675–680

    Google Scholar 

  45. Phornphutkul C, Introne WJ, Perry MB et al. (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121

    Google Scholar 

  46. Damian LO, Felea I, Boloşiu C et al. (2013) A case of alkaptonuria – ultrasonographic findings. Med Ultrason 15:321–325

    Google Scholar 

  47. Arnoux JB, Le Quan Sang KH, Brassier A et al.(2015) Old treatments for new insights and strategies: proposed management in adults and children with alkaptonuria. J Inherit Metab Dis 38:791–796

    Google Scholar 

  48. Tomoeda K, Awata H, Matsuura T et al. (2000) Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab 71:506–510

    Google Scholar 

  49. Item CB, Mihalek I, Lichtarge O, Jalan A et al. (2007) Manifestation of hawkinsinuria in a patient compound heterozygous for hawkinsinuria and tyrosinemia III. Mol Genet Metab 91:379–383

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anupam Chakrapani , Paul Gissen or Patrick McKiernan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chakrapani, A., Gissen, P., McKiernan, P. (2016). Disorders of Tyrosine Metabolism. In: Saudubray, JM., Baumgartner, M., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49771-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49771-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49769-2

  • Online ISBN: 978-3-662-49771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics