Skip to main content

Analysis of Quantum Communication Protocols

  • Chapter
  • First Online:
Quantum Information Theory

Part of the book series: Graduate Texts in Physics ((GTP))

  • 5784 Accesses

Abstract

The problems of transmitting a classical message via a quantum channel (Chap. 4) and estimating a quantum state (Chaps. 3 and 6) have a classical analog. These are not intrinsically quantum-specific problems but quantum extensions of classical problems. The difficulties of these quantum extensions are mainly caused by the non-commutativity of quantum mechanics. However, quantum information processing is not merely a non-commuting version of classical information processing. There exist many quantum protocols without any classical analog. In this context, quantum information theory covers a greater field than a noncommutative analog of classical information theory. The key to these additional effects is the advantage of using entanglement treated in Chap. 8, where we examined mainly the quantification of entanglement. In this chapter, we will introduce several quantum communication protocols that are possible only by using entanglement and are therefore classically impossible. (Some of protocols introduced in this section have classical analogs.) We also examine the transmission of quantum states (quantum error correction), communication in the presence of eavesdroppers, and several other types of communication that we could not handle in Chap. 4. As seen in this chapter, the transmission of a quantum state is closely related to communication with no information leakage to eavesdroppers. The noise in the transmission of a quantum state clearly corresponds to the eavesdropper in a quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The superscript e of \(C_{c}^{e}\) indicates that “entangled” input is allowed.

  2. 2.

    The subscript a expresses “assistance.”

  3. 3.

    The second subscript, e, of \(C_{c,e}^{e}\) indicates the shared “entanglement.” The superscript e indicates “entangled” operations between sending systems.

  4. 4.

    The subscript r indicates “resolvability”.

  5. 5.

    Ahlswede-Winter [36] also showed that \(C_i(W)=C_i^\dagger (W)=C_c(W)\) in a different way.

  6. 6.

    By adding the states \(e^*_+\mathop {=}\limits ^{\mathrm{def}}\frac{1}{\sqrt{2}}(e_0+ i e_1)\) and \(e^*_-\mathop {=}\limits ^{\mathrm{def}}\frac{1}{\sqrt{2}}(e_0- i e_1)\) in the transmission, and by adding the measurement \(\{|e^*_+\rangle \langle e^*_+|, |e^*_-\rangle \langle e^*_-|\}\), it is possible to estimate \(\kappa \). This is called the six-state method [4648].

  7. 7.

    Since “quantum” states are to be sent, the capacities are called quantum capacities. The subscript q indicates that “quantum” states are to be sent.

  8. 8.

    In their paper, it is mentioned that Levitin [82] showed the direct part of Theorem 4.1 in this special case.

References

  1. A. Einstein, R. Podolsky, N. Rosen, Can quantum-mechanical descriptions of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.J. Polzik, Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  5. J.-W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein, A. Zeilinger, Experimental realization of freely propagating teleported qubits. Nature 421, 721–725 (2003)

    Article  ADS  Google Scholar 

  6. M. Murao, D. Jonathan, M.B. Plenio, V. Vedral, Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  7. H. Nagaoka, S. Osawa, Theoretical basis and applications of the quantum Arimoto-Blahut algorithms, in Proceedings 2nd Quantum Information Technology Symposium (QIT2) (1999), pp. 107–112

    Google Scholar 

  8. M. Hayashi, H. Imai, K. Matsumoto, M.B. Ruskai, T. Shimono, Qubit channels which require four inputs to achieve capacity: implications for additivity conjectures. Quant. Inf. Comput. 5, 13–31 (2005)

    MathSciNet  MATH  Google Scholar 

  9. M. Fukuda, Extending additivity from symmetric to asymmetric channels. J. Phys. A Math. Gen. 38, L753–L758 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. King, Additivity for a class of unital qubit channels. J. Math. Phys. 43, 4641–4653 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. King, The capacity of the quantum depolarizing channel. IEEE Trans. Inf. Theory 49, 221–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.W. Shor, Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43, 4334–4340 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. K. Matsumoto, T. Shimono, A. Winter, Remarks on additivity of the Holevo channel capacity and of the entanglement of formation. Commun. Math. Phys. 246(3), 427–442 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. P.W. Shor, Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246(3), 453–473 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A.A. Pomeransky, Strong superadditivity of the entanglement of formation follows from its additivity. Phys. Rev. A 68, 032317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Fukuda, M.M. Wolf, Simplifying additivity problems using direct sum constructions. J. Math. Phys. 48(7), 072101 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Osawa, H. Nagaoka, Numerical experiments on the capacity of quantum channel with entangled input states. IEICE Trans. E84-A, 2583–2590 (2001)

    Google Scholar 

  18. K. Matsumoto, F. Yura, Entanglement cost of antisymmetric states and additivity of capacity of some quantum channel. J. Phys. A: Math. Gen. 37, L167–L171 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Fannes, B. Haegeman, M. Mosonyi, D. Vanpeteghem, Additivity of minimal entropy output for a class of covariant channels. quant-ph/0410195 (2004)

    Google Scholar 

  20. N. Datta, A.S. Holevo, Y. Suhov, Additivity for transpose depolarizing channels. Int. J. Quantum Inform. 4, 85 (2006)

    Article  MATH  Google Scholar 

  21. N. Datta, M.B. Ruskai, Maximal output purity and capacity for asymmetric unital qudit channels. J. Phys. A: Math. Gen. 38, 9785 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M.M. Wolf, J. Eisert, Classical information capacity of a class of quantum channels. New J. Phys. 7, 93 (2005)

    Article  ADS  Google Scholar 

  23. M. Fukuda, Revisiting additivity violation of quantum channels. Commun. Math. Phys. 332, 713–728 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S. Bose, M.B. Plenio, B. Vedral, Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47, 291 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Hiroshima, Optimal dense coding with mixed state entanglement. J. Phys. A Math. Gen. 34, 6907–6912 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. G. Bowen, Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)

    Article  ADS  Google Scholar 

  28. M. Horodecki, P. Horodecki, R. Horodecki, D.W. Leung, B.M. Terhal, Classical capacity of a noiseless quantum channel assisted by noisy entanglement. Quant. Inf. Comput. 1, 70–78 (2001)

    MathSciNet  MATH  Google Scholar 

  29. A. Winter, Scalable programmable quantum gates and a new aspect of the additivity problem for the classical capacity of quantum channels. J. Math. Phys. 43, 4341–4352 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. C.H. Bennett, P.W. Shor, J.A. Smolin, A.V. Thapliyal, Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081 (1999)

    Article  ADS  Google Scholar 

  31. C.H. Bennett, P.W. Shor, J.A. Smolin, A.V. Thapliyal, Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637–2655 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.S. Holevo, On entanglement-assisted classical capacity. J. Math. Phys. 43, 4326–4333 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. T.S. Han, S. Verdú, Approximation theory of output statistics. IEEE Trans. Inf. Theory 39, 752–772 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. T.S. Han, S. Verdú, Spectrum invariancy under output approximation for full-rank discrete memoryless channels. Problemy Peredachi Informatsii 29(2), 9–27 (1993)

    MathSciNet  MATH  Google Scholar 

  35. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35, 15–29 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Ahlswede, A. Winter, Strong converse for identification via quantum channels. IEEE Trans. Inf. Theory 48, 569–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. A.D. Wyner, The wire-tap channel. Bell. Syst. Tech. J. 54, 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India, 1984), pp. 175–179

    Google Scholar 

  39. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, H. Zbinden, Quantum key distribution over 67 km with a plug & play system. New J. Phys. 4, 41.1–41.8 (2002)

    Google Scholar 

  40. E. Klarreich, Quantum cryptography: can you keep a secret? Nature 418, 270–272 (2002)

    Article  ADS  Google Scholar 

  41. H. Kosaka, A. Tomita, Y. Nambu, N. Kimura, K. Nakamura, Single-photon interference experiment over 100 km for quantum cryptography system using a balanced gated-mode photon detector. Electron. Lett. 39(16), 1199–1201 (2003)

    Article  Google Scholar 

  42. C. Gobby, Z.L. Yuan, A.J. Shields, Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  ADS  Google Scholar 

  43. I. Devetak, The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Devetak, A. Winter, Distillation of secret key and entanglement from quantum states. Proc. R. Soc. Lond. A 461, 207–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. H.-K. Lo, Proof of unconditional security of six-state quantum key distribution scheme. Quant. Inf. Comput. 1, 81–94 (2001)

    MathSciNet  MATH  Google Scholar 

  46. N. Gisin, contribution to the Torino Workshop, 1997

    Google Scholar 

  47. D. Bruß, Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018–3021 (1998)

    Article  ADS  Google Scholar 

  48. H. Bechmann-Pasquinucci, N. Gisin, Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography. Phys. Rev. A 59, 4238–4248 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. G. Blakely, Safeguarding cryptographic keys. Proc. AFIPS 48, 313 (1979)

    Google Scholar 

  50. A. Shamir, How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  51. R. Cleve, D. Gottesman, H.-K. Lo, How to share a quantum secret. Phys. Rev. Lett. 82, 648 (1999)

    Article  ADS  Google Scholar 

  52. D. Gottesman, On the theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  53. I. Devetak, A. Winter, Classical data compression with quantum side information. Phys. Rev. A 68, 042301 (2003)

    Article  ADS  Google Scholar 

  54. P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995)

    Article  ADS  Google Scholar 

  55. A.R. Calderbank, P.W. Shor, Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  56. A.M. Steane, Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. E. Knill, R. Laflamme, Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  58. D. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  59. A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. M. Hamada, Notes on the fidelity of symplectic quantum error-correcting codes. Int. J. Quant. Inf. 1, 443–463 (2003)

    Article  MATH  Google Scholar 

  61. M. Hayashi, S. Ishizaka, A. Kawachi, G. Kimura, T. Ogawa, Introduction to Quantum Information Science, Graduate Texts in Physics (2014)

    Google Scholar 

  62. P. W. Shor, The quantum channel capacity and coherent information, in Lecture Notes, MSRI Workshop on Quantum Computation (2002). http://www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/

  63. S. Lloyd, The capacity of the noisy quantum channel. Phys. Rev. A 56, 1613 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  64. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  65. M. Tomamichel, M. M. Wilde, A. Winter, Strong converse rates for quantum communication (2014). arXiv:1406.2946

  66. H. Barnum, E. Knill, M.A. Nielsen, On quantum fidelities and channel capacities. IEEE Trans. Inf. Theory 46, 1317–1329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217–3220 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. C.H. Bennett, C.A. Fuchs, J.A. Smolin, Entanglement-enhanced classical communication on a noisy quantum channel, eds. by O. Hirota, A. S. Holevo, C. M. Cavesby. Quantum Communication, Computing, and Measurement (Plenum, New York, 1997), pp. 79–88

    Google Scholar 

  69. H. Nagaoka, Algorithms of Arimoto-Blahut type for computing quantum channel capacity, in Proceedings 1998 IEEE International Symposium on Information Theory (1998), p. 354

    Google Scholar 

  70. S. Arimoto, An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans. Inf. Theory 18, 14–20 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  71. R. Blahut, Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 18, 460–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Fujiwara, T. Hashizume, Additivity of the capacity of depolarizing channels. Phys. Lett A 299, 469–475 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. G. Vidal, W. Dür, J.I. Cirac, Entanglement cost of antisymmetric states. quant-ph/0112131v1 (2001)

    Google Scholar 

  74. T. Shimono, Additivity of entanglement of formation of two three-level-antisymmetric states. Int. J. Quant. Inf. 1, 259–268 (2003)

    Article  MATH  Google Scholar 

  75. F. Yura, Entanglement cost of three-level antisymmetric states. J. Phys. A Math. Gen. 36, L237–L242 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. K.M.R. Audenaert, S.L. Braunstein, On strong superadditivity of the entanglement of formation. Commun. Math. Phys. 246(3), 443–452 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. M. Koashi, A. Winter, Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  78. K. Matsumoto, private communication (2005)

    Google Scholar 

  79. K. Matsumoto, Yet another additivity conjecture. Phys. Lett. A 350, 179–181 (2006)

    Article  ADS  MATH  Google Scholar 

  80. R.F. Werner, A.S. Holevo, Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43, 4353 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. M.B. Hastings, Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)

    Article  Google Scholar 

  82. L.B. Levitin, Information, Complexity and Control in Quantum Physics, eds. by A. Blaquière, S. Diner, G. Lochak. (Springer, Vienna), pp. 15–47

    Google Scholar 

  83. A. Barenco, A.K. Ekert, Dense coding based on quantum entanglement. J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  84. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, W. Wooters, Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869–1876 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  85. B. Schumacher, Sending quantum entanglement through noisy channels. Phys. Rev. A 54, 2614–2628 (1996)

    Article  ADS  Google Scholar 

  86. H. Barnum, M.A. Nielsen, B. Schumacher, Information transmission through a noisy quantum channel. Phys. Rev. A 57, 4153–4175 (1997)

    Article  ADS  Google Scholar 

  87. I. Devetak, P.W. Shor, The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. J. Yard, in preparation

    Google Scholar 

  89. C. Morgan, A. Winter, “Pretty strong" converse for the quantum capacity of degradable channels. IEEE Trans. Inf. Theory 60, 317–333 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M. (2017). Analysis of Quantum Communication Protocols. In: Quantum Information Theory. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49725-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49723-4

  • Online ISBN: 978-3-662-49725-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics