Skip to main content

Quantum Hypothesis Testing and Discrimination of Quantum States

  • Chapter
  • First Online:
Quantum Information Theory

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Various types of information processing occur in quantum systems. The most fundamental processes are state discrimination and hypothesis testing. These problems often form the basis for an analysis of other types of quantum information processes. The difficulties associated with the noncommutativity of quantum mechanics appear in the most evident way among these problems. Therefore, we examine state discrimination and hypothesis testing before examining other types of information processing in quantum systems in this text. In two-state discrimination, we discriminate between two unknown candidate states by performing a measurement and examining the measurement data. Note that in this case, the two hypotheses for the unknown state are treated symmetrically. In contrast, if the two hypotheses are treated asymmetrically, the process is called hypothesis testing rather than state discrimination. Hypothesis testing is not only interesting in itself but is also relevant to other topics in quantum information theory. In particular, the quantum version of Stein’s lemma, which is the central topic of this chapter, is closely related to quantum channel coding discussed in Chap. 4. Moreover, Stein’s lemma is also connected to the distillation of maximally entangled states, as discussed in Sect. 8.5, in addition to other topics discussed in Chap. 9. The importance of Stein’s lemma may not be apparent at first sight since it considers the tensor product states of identical states, which rarely appear in real communications. However, the asymptotic analysis for these tensor product states provides the key to the analysis of asymptotic problems in quantum communications. For these reasons, this topic is discussed in an earlier chapter in this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Historically, the von Neumann entropy for a density matrix \(\rho \) was first defined by von Neumann [1]. Following this definition, Shannon [2] defined the entropy for a probability distribution.

  2. 2.

    Here, the monotonicity concerns only the state evolution, not parameter s.

  3. 3.

    \({\max \{a|b\}}\) denotes the maximum value of a satisfying condition b.

  4. 4.

    An example of a numerical solution of the maximization problem in quantum information theory is discussed in Sect. 4.1.2, where we calculate the classical capacity \(C_c(W)\). Nagaoka’s quantum version of the Arimoto–Blahut algorithm [26, 27], known from classical information theory [28, 29]. The connection between these quantities and linear programming has also been discussed widely [20, 30].

  5. 5.

    Our proof follows [19].

References

  1. J. von Neumann, Mathematical Foundations of Quantum Mechanics, (Princeton University Press, Princeton, NJ, 1955). (Originally appeared in German in 1932)

    Google Scholar 

  2. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Datta, Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  4. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel, On quantum Renyi entropies: a new generalization and some properties. J. Math. Phys. 54, 122203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M.M. Wilde, A. Winter, D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy. Comm. Math. Phys. 331(2), 593 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. R.L. Frank, E.H. Lieb, Monotonicity of a relative Renyi entropy. J. Math. Phys. 54, 122201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T. Ogawa, H. Nagaoka, Strong converse and Stein’s lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory 46, 2428–2433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. E.H. Lieb, W.E. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to sobolev inequalities, in Studies in Mathematical Physics, ed. by E. Lieb, B. Simon, A. Wightman (Princeton University Press, 1976), pp. 269–303

    Google Scholar 

  9. H. Araki, On an inequality of lieb and thirring. Lett. Math. Phys. 19, 167–170 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C.A. Fuchs, Distinguishability and Accessible Information in Quantum Theory, quant-ph/9601020 (1996)

    Google Scholar 

  11. A.S. Holevo, An analog of the theory of statistical decisions in noncommutative theory of probability. Trudy Moskov. Mat. Obšč. 26, 133–149 (1972) (in Russian). (English translation: Trans. Moscow Math. Soc. 26, 133–149 (1972))

    Google Scholar 

  12. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)

    MATH  Google Scholar 

  13. K.M.R. Audenaert, J. Calsamiglia, Ll. Masanes, R. Munoz-Tapia, A. Acin, E. Bagan, F. Verstraete, Discriminating states: the quantum Chernoff bound. Phys. Rev. Lett. 98, 160501 (2007)

    Google Scholar 

  14. M. Nussbaum, A. Szkoła, The chernoff lower bound for symmetric quantum hypothesis testing. Ann. Stat. 37, 1040–1057 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Ogata, A generalization of powers-stormer inequality. Lett. Math. Phys. 97, 339–346 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. V. Jaksic, Y. Ogata, C.-A. Piller, R. Seiringer, Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. H.P. Yuen, R.S. Kennedy, M. Lax, Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inf. Theory, 125–134 (1975)

    Google Scholar 

  18. M. Ban, K. Kurokawa, R. Momose, O. Hirota, Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. R.M. Van Slyke, R.J.-B. Wets, A duality theory for abstract mathematical programs with applications to optimal control theory. J. Math. Anal. Appl. 22, 679–706 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Imai, M. Hachimori, M. Hamada, H. Kobayashi, K. Matsumoto, “Optimization in quantum computation and information,” Proc. 2nd Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications, Budapest, Hungary (2001)

    Google Scholar 

  21. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization (SIAM/MPS, Philadelphia, 2001)

    Book  MATH  Google Scholar 

  22. M. Hayashi, Minimization of deviation under quantum local unbiased measurements, master’s thesis (Graduate School of Science, Kyoto University, Japan, Department of Mathematics, 1996)

    Google Scholar 

  23. M. Hayashi, A linear programming approach to attainable cramer-rao type bound and randomness conditions, Kyoto-Math 97–08; quant-ph/9704044 (1997)

    Google Scholar 

  24. M. Hayashi, A linear programming approach to attainable Cramer–Rao type bound, in Quantum Communication, Computing, and Measurement, ed. by O. Hirota, A.S. Holevo, C.M. Caves, (Plenum, New York, 1997), pp. 99–108. (Also appeared as Chap. 12 of Asymptotic Theory of Quantum Statistical Inference, M. Hayashi eds.)

    Google Scholar 

  25. E.M. Rains, A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47, 2921–2933 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Arimoto, An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans. Inf. Theory 18, 14–20 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Blahut, Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 18, 460–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Nagaoka, Algorithms of Arimoto-Blahut type for computing quantum channel capacity, in Proceedings of 1998 IEEE International Symposium on Information Theory, 354 (1998)

    Google Scholar 

  29. H. Nagaoka, S. Osawa, Theoretical basis and applications of the quantum Arimoto-Blahut algorithms, in Proceedings of 2nd Quantum Information Technology Symposium (QIT2), (1999), pp. 107–112

    Google Scholar 

  30. P.W. Shor, Capacities of quantum channels and how to find them. Math. Programm. 97, 311–335 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Hiai, D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability. Comm. Math. Phys. 143, 99–114 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. H. Nagaoka, Information spectrum theory in quantum hypothesis testing, in Proceedings of 22th Symposium on Information Theory and Its Applications (SITA), (1999), pp. 245–247 (in Japanese)

    Google Scholar 

  34. H. Nagaoka, M. Hayashi, An information-spectrum approach to classical and quantum hypothesis testing. IEEE Trans. Inf. Theory 53, 534–549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Nagaoka, Limit theorems in quantum information theory. Suurikagaku 456, 47–55 (2001). (in Japanese)

    Google Scholar 

  36. M. Ohya, D. Petz, Quantum Entropy and Its Use (Springer, Berlin Heidelberg New York, 1993)

    Book  MATH  Google Scholar 

  37. H. Nagaoka, Private communication to A. Fujiwara (1991)

    Google Scholar 

  38. A. Fujiwara, private communication to H. Nagaoka (1996)

    Google Scholar 

  39. M. Mosonyi, T. Ogawa, Quantum hypothesis testing and the operational interpretation of the quantum Renyi relative entropies. Comm. Math. Phys. 334(3), 1617–1648 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. M. Hayashi, Optimal sequence of POVMs in the sense of Stein’s lemma in quantum hypothesis. J. Phys. A Math. Gen. 35, 10759–10773 (2002)

    Article  ADS  MATH  Google Scholar 

  41. D. Petz, Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23, 57–65 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J. Walgate, A.J. Short, L. Hardy, V. Vedral, Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)

    Article  ADS  Google Scholar 

  43. S. Virmani, M. Sacchi, M.B. Plenio, D. Markham, Optimal local discrimination of two multipartite pure states. Phys. Lett. A 288, 62 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Y.-X. Chen, D. Yang, Distillable entanglement of multiple copies of Bell states. Phys. Rev. A 66, 014303 (2002)

    Article  ADS  Google Scholar 

  45. A. Chefles, Condition for unambiguous state discrimination using local operations and classical communication. Phys. Rev. A 69, 050307(R) (2004)

    Article  ADS  Google Scholar 

  46. S. Virmani, M.B. Plenio, Construction of extremal local positive-operator-valued measures under symmetry. Phys. Rev. A 67, 062308 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  47. H. Fan, Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)

    Article  ADS  Google Scholar 

  48. S. Ghosh, G. Kar, A. Roy, D. Sarkar, Distinguishability of maximally entangled states. Phys. Rev. A 70, 022304 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. M. Owari, M. Hayashi, Local copying and local discrimination as a study for non-locality. Phys. Rev. A 74, 032108 (2006); Phys. Rev. A 77, 039901(E) (2008)

    Google Scholar 

  50. M. Hayashi, D. Markham, M. Murao, M. Owari, S. Virmani, Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Phys. Rev. Lett. 96, 040501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Hayashi, Asymptotics of quantum relative entropy from a representation theoretical viewpoint. J. Phys. A Math. Gen. 34, 3413–3419 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. T. Ogawa, M. Hayashi, On error exponents in quantum hypothesis testing. IEEE Trans. Inf. Theory 50, 1368–1372 (2004); quant-ph/0206151 (2002)

    Google Scholar 

  53. N. Ozawa, Private communication to T. Ogawa (2010)

    Google Scholar 

  54. H. Nagaoka, Strong converse theorems in quantum information theory, in Proceedings of ERATO Conference on Quantum Information Science (EQIS) 2001, 33 (2001). (also appeared as Chap. 3 of Asymptotic Theory of Quantum Statistical Inference, M. Hayashi eds.)

    Google Scholar 

  55. M. Hayashi, Quantum hypothesis testing for the general quantum hypotheses, in Proceedings of 24th Symposium on Information Theory and Its Applications (SITA), (2001), pp. 591–594

    Google Scholar 

  56. M. Hayashi, K. Matsumoto, Y. Tsuda, A study of LOCC-detection of a maximally entangled state using hypothesis testing. J. Phys. A: Math. and Gen. 39, 14427–14446 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. M. Hayashi, B.-S. Shi, A. Tomita, K. Matsumoto, Y. Tsuda, Y.-K. Jiang, Hypothesis testing for an entangled state produced by spontaneous parametric down conversion. Phys. Rev. A 74, 062321 (2006)

    Article  ADS  Google Scholar 

  58. M. Hayashi, Group theoretical study of LOCC-detection of maximally entangled state using hypothesis testing. New J. of Phys. 11, 043028 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M. (2017). Quantum Hypothesis Testing and Discrimination of Quantum States. In: Quantum Information Theory. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49725-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49723-4

  • Online ISBN: 978-3-662-49725-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics