Skip to main content

Source Coding in Quantum Systems

  • Chapter
  • First Online:
Quantum Information Theory

Part of the book series: Graduate Texts in Physics ((GTP))

  • 5781 Accesses

Abstract

Nowadays, data compression software has become an indispensable tool for current network system. Why is such a compression possible? Information commonly possesses redundancies. In other words, information possesses some regularity. If one randomly types letters of the alphabet, it is highly unlikely letters that form a meaningful sentence or program. Imagine that we are assigned a task of communicating a sequence of 1000 binary digits via telephone. Assume that the binary digits satisfies the following rule: The 2nth and \((2n+1)\)th digits of this sequence are the same. Naturally, we would not read out all 1000 digits of the sequence; we would first explain that the 2nth and \((2n+1)\)th digits are the same, and then read out the even-numbered (or odd-numbered) digits. We may even check whether there is any further structure in the sequence. In this way, compression software works by changing the input sequence of letters (or numbers) into another sequence of letters that can reproduce the original sequence, thereby reducing the necessary storage. The compression process may therefore be regarded as an encoding. This procedure is called source coding in order to distinguish it from the channel coding examined in Chap. 4. Applying this idea to the quantum scenario, the presence of any redundant information in a quantum system may be similarly compressed to a smaller quantum memory for storage or communication. However, in contrast to the classical case, we have at least two distinct scenarios. The task of the first scenario is saving memory in a quantum computer. This will be relevant when quantum computers are used in practice. In this case, a given quantum state is converted into a state on a system of lower size (dimension). The original state must then be recoverable from the compressed state. Note that the encoder does not know what state is to be compressed. The task in the second scenario is to save the quantum system to be sent for quantum cryptography. In this case, the sender knows what state to be sent. This provides the encoder with more options for compression. In the decompression stage, there is no difference between the first and second scenarios, since their tasks are conversions from one quantum system to another. In this chapter, the two scenarios of compression outlined above are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The subscript q indicates the “quantum” memory.

  2. 2.

    Even though the error of universal quantum variable-length source code converges to 0, its convergence rate is not exponential [9].

  3. 3.

    The subscript c denotes classical memory.

  4. 4.

    The last subscript r denotes shared “randomness.”

  5. 5.

    The last subscript e denotes the shared “entanglement” while the superscript e denotes entangled input.

References

  1. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. T.S. Han, K. Kobayashi, Mathematics of Information and Encoding (American Mathematical Society, 2002) (originally appeared in Japanese in 1999)

    Google Scholar 

  3. B. Schumacher, Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Jozsa, B. Schumacher, A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41(12), 2343–2349 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Y. Mitsumori, J.A. Vaccaro, S.M. Barnett, E. Andersson, A. Hasegawa, M. Takeoka, M. Sasaki, Experimental demonstration of quantum source coding. Phys. Rev. Lett. 91, 217902 (2003)

    Article  ADS  MATH  Google Scholar 

  6. M. Koashi, N. Imoto, Quantum information is incompressible without errors. Phys. Rev. Lett. 89, 097904 (2002)

    Article  ADS  Google Scholar 

  7. L.D. Davisson, Comments on sequence time coding for data compression. Proc. IEEE 54, 2010 (1966)

    Article  Google Scholar 

  8. T.J. Lynch, Sequence time coding for data compression. Proc. IEEE 54, 1490–1491 (1966)

    Article  Google Scholar 

  9. M. Hayashi, K. Matsumoto, Quantum universal variable-length source coding. Phys. Rev. A 66, 022311 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Hayashi, K. Matsumoto, Simple construction of quantum universal variable-length source coding. Quant. Inf. Comput. 2, Special Issue, 519–529 (2002)

    Google Scholar 

  11. I. Devetak, A. Winter, Classical data compression with quantum side information. Phys. Rev. A 68, 042301 (2003)

    Article  ADS  Google Scholar 

  12. P. Hayden, R. Jozsa, A. Winter, Trading quantum for classical resources in quantum data compression. J. Math. Phys. 43, 4404–4444 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. Hayashi, Exponents of quantum fixed-length pure state source coding. Phys. Rev. A 66, 032321 (2002)

    Article  ADS  Google Scholar 

  14. T.S. Han, Folklore in source coding: information-spectrum approach. IEEE Trans. Inf. Theory 51(2), 747–753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Hayashi, Second-order asymptotics in fixed-length source coding and intrinsic randomness. IEEE Trans. Inf. Theory 54, 4619–4637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Csiszár, J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems (Academic, 1981)

    Google Scholar 

  17. R. Jozsa, M. Horodecki, P. Horodecki, R. Horodecki, Universal quantum information compression. Phys. Rev. Lett. 81, 1714 (1998)

    Article  ADS  MATH  Google Scholar 

  18. M. Koashi, N. Imoto, Compressibility of mixed-state signals. Phys. Rev. Lett. 87, 017902 (2001)

    Article  ADS  Google Scholar 

  19. M. Horodecki, Limits for compression of quantum information carried by ensembles of mixed states. Phys. Rev. A 57, 3364–3369 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Horodecki, Optimal compression for mixed signal states. Phys. Rev. A 61, 052309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. H.-K. Lo, S. Popescu, Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301 (2001)

    Article  ADS  Google Scholar 

  22. C.H. Bennett, P.W. Shor, J.A. Smolin, A.V. Thapliyal, Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83, 3081 (1999)

    Article  ADS  Google Scholar 

  23. W. Dür, G. Vidal, J.I. Cirac, Visible compression of commuting mixed state. Phys. Rev. A 64, 022308 (2001)

    Article  ADS  Google Scholar 

  24. C.H. Bennett, P.W. Shor, J.A. Smolin, A.V. Thapliyal, Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637–2655 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Winter, "Extrinsic" and "intrinsic" data in quantum measurements: asymptotic convex decomposition of positive operator valued measures. Commun. Math. Phys. 244(1), 157–185 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Winter, S. Massar, Compression of quantum measurement operations. Phys. Rev. A 64, 012311 (2001)

    Article  ADS  Google Scholar 

  27. H. Barnum, C.A. Fuchs, R. Jozsa, B. Schumacher, A general fidelity limit for quantum channels. Phys. Rev. A 54, 4707–4711 (1996)

    Article  ADS  Google Scholar 

  28. H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, B. Schumacher, On quantum coding for ensembles of mixed states. J. Phys. A Math. Gen. 34, 6767–6785 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A. Winter, Schumacher’s quantum coding revisited. Preprint 99–034, Sonder forschungsbereich 343. Diskrete Strukturen in der Mathematik Universität Bielefeld (1999)

    Google Scholar 

  30. R. Jozsa, S. Presnell, Universal quantum information compression and degrees of prior knowledge. Proc. R. Soc. Lond. A 459, 3061–3077 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. C.H. Bennett, A.W. Harrow, S. Lloyd, Universal quantum data compression via nondestructive tomography. Phys. Rev. A 73, 032336 (2006)

    Article  ADS  Google Scholar 

  32. M. Hayashi, Universal approximation of multi-copy states and universal quantum lossless data compression. Commun. Math. Phys. 293(1), 171–183 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Petz, M. Mosonyi, Stationary quantum source coding. J. Math. Phys. 42, 48574864 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Bjelaković, A. Szkoła, The data compression theorem for ergodic quantum information sources. Quant. Inf. Process. 4, 49–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Datta, Y. Suhov, Data compression limit for an information source of interacting qubits. Quant. Inf. Process. 1(4), 257–281 (2002)

    Article  MathSciNet  Google Scholar 

  36. I. Bjelaković, T. Kruger, R. Siegmund-Schultze, A. Szkoła, The Shannon-McMillan theorem for ergodic quantum lattice systems. Invent. Math. 155, 203–222 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. H. Nagaoka, M. Hayashi, An information-spectrum approach to classical and quantum hypothesis testing. IEEE Trans. Inf. Theory 53, 534–549 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Kaltchenko, E.-H. Yang, Universal compression of ergodic quantum sources. Quant. Inf. Comput. 3, 359–375 (2003)

    MathSciNet  MATH  Google Scholar 

  39. R. Jozsa, Quantum noiseless coding of mixed states, in Talk given at 3rd Santa Fe Workshop on Complexity, Entropy, and the Physics of Information, May 1994

    Google Scholar 

  40. C.H. Bennett, A. Winter, Private Communication

    Google Scholar 

  41. A.D. Wyner, The common information of two dependent random variables. IEEE Trans. Inf. Theory 21, 163–179 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Slepian, J.K. Wolf, Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 471 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. C. Ahn, A. Doherty, P. Hayden, A. Winter, On the distributed compression of quantum information. IEEE Trans. Inform. Theory 52, 4349–4357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Abeyesinghe, I. Devetak, P. Hayden, A. Winter, The mother of all protocols: Restructuring quantum information’s family tree. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, rspa20090202 (2009)

    Google Scholar 

  45. M. Hayashi, Optimal Visible Compression Rate For Mixed States Is Determined By Entanglement Purification. Phy. Rev. A Rapid Commun. 73, 060301(R) (2006)

    Article  Google Scholar 

  46. M. Tomamochel, M. Hayashi, A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks. IEEE Trans. Inf. Theory 59(11), 7693–7710 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayashi, M. (2017). Source Coding in Quantum Systems. In: Quantum Information Theory. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49725-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49725-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49723-4

  • Online ISBN: 978-3-662-49725-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics