Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 522 Accesses

Abstract

Ge is considered as a potential channel material for high-performance CMOS device at future technology node for its high and more symmetric carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee K, Liew S, Chua S, Chi D, Sun H, Pan X (2004) Formation and morphology evolution of nickel germanides on Ge (100) under rapid thermal annealing. In: MRS Proceedings, p C2. 4

    Google Scholar 

  2. Ashburn SP, Öztürk MC, Harris G, Maher DM (1993) Phase transitions during solid-state formation of cobalt germanide by rapid thermal annealing. J Appl Phys 74:4455–4460

    Article  ADS  Google Scholar 

  3. Mueller M, Zhao Q, Urban C, Sandow C, Buca D, Lenk S et al (2008) Schottky-barrier height tuning of NiGe/n-Ge contacts using As and P segregation. Mater Sci Eng B 154:168–171

    Article  Google Scholar 

  4. Colgan E, Mäenpää M, Finetti M, Nicolet M (1983) Electrical characteristics of thin Ni2Si, NiSi, and NiSi2 layers grown on silicon. J Electron Mater 12:413–422

    Article  ADS  Google Scholar 

  5. Nash A, Nash P (1987) The Ge-Ni (Germanium-Nickel) system. Bull Alloy Phase Diagrams 8:255–264

    Article  MathSciNet  Google Scholar 

  6. Park K, Lee B, Lee D, Ko D-H, Kwak K, Yang C-W et al (2007) A study on the thermal stabilities of the NiGe and Ni1-xTaxGe systems. J Electrochem Soc 154:H557–H560

    Article  Google Scholar 

  7. Zhang Y-Y, Oh J, Li S-G, Jung S-Y, Park K-Y, Shin H-S et al (2009) Ni Germanide utilizing Ytterbium interlayer for high-performance Ge MOSFETs. Electrochem Solid-State Lett 12:H18–H20

    Article  Google Scholar 

  8. Zhu S, Yu M, Lo G, Kwong D (2007) Enhanced thermal stability of nickel germanide on thin epitaxial germanium by adding an ultrathin titanium layer. Appl Phys Lett 91:051905

    Article  ADS  Google Scholar 

  9. Nakatsuka O, Suzuki A, Sakai A, Ogawa M, Zaima S (2007) Impact of Pt incorporation on thermal stability of NiGe layers on Ge (001) substrates. In: 2007 International workshop on junction technology, pp 87–88

    Google Scholar 

  10. Mueller M, Zhao OT, Urban C, Sandow C, Breuer U, Mantl S (2008) Schottky-barrier height tuning of Ni and Pt germanide/n-Ge contacts using dopant segregation. In: 2008 9th International conference on solid-state and integrated-circuit technology, vols 1–4, pp 153–156

    Google Scholar 

  11. Liu J, Wen H, Lu J, Kwong D (2005) Improving gate-oxide reliability by TiN capping layer on NiSi FUSI metal gate. IEEE Electron Device Lett 26:458–460

    Article  ADS  Google Scholar 

  12. Jin LJ, Pey KL, Choi WK, Fitzgerald EA, Antoniadis DA, Pitera AJ et al (2004) The interfacial reaction of Ni with (111)Ge, (100)Si0.75Ge0.25 and (100)Si at 400 °C. Thin Solid Films 462:151–155

    Article  ADS  Google Scholar 

  13. Zhu S, Nakajima A (2005) Annealing temperature dependence on nickel–germanium solid-state reaction. Jpn J Appl Phys 44:L753

    Article  ADS  Google Scholar 

  14. Li Z, An X, Li M, Yun Q, Lin M, Li M, Zhang X, Huang R (2013) Morphology and electrical performance improvement of NiGe/Ge contact by P and Sb co-implantation. IEEE Electron Device Lett 34(5):596–598

    Google Scholar 

  15. Rich D, Miller T, Chiang T-C (1990) Electronic and chemical properties of In and Sb adsorbed on Ge (100) studied by synchrotron photoemission. Phys Rev B 41:3004

    Article  ADS  Google Scholar 

  16. Horn-von Hoegen M, LeGoues F, Copel M, Reuter M, Tromp R (1991) Defect self-annihilation in surfactant-mediated epitaxial growth. Phys Rev Lett 67:1130

    Google Scholar 

  17. Hume-Rothery W, Smallman RW, Haworth CW (1969) The structure of metals and alloys, Metals and Metallurgy Trust, London, UK

    Google Scholar 

  18. Schroder DK (2006) Semiconductor material and device characterization. Wiley

    Google Scholar 

  19. Oh JH, Chen Y-T, Ok I, Jeon K, Lee S-H (2010) High specific contact resistance of ohmic contacts to n-Ge source/drain and low transport characteristics of Ge nMOSFETs. In: International conference on solid state devices and materials, Japan, pp 3–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Z. (2016). Metal Germanide Technology. In: The Source/Drain Engineering of Nanoscale Germanium-based MOS Devices. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49683-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49683-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49681-7

  • Online ISBN: 978-3-662-49683-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics