Ge-based Schottky Barrier Height Modulation Technology

  • Zhiqiang LiEmail author
Part of the Springer Theses book series (Springer Theses)


Germanium (Ge) has gained a lot of attention for its potential application as an alternative channel material due to its high and symmetric carrier mobilities. However, due to the low solid solubility and high diffusivity of n-type dopants in Ge, it is very challenging to obtain heavily doped shallow junction. Metal source/drain (S/D) is considered as a good approach for the S/D engineering, but the performance of Schottky Barrier (SB) MOSFET is still limited by some factors, and one of which is the severe Fermi-level pinning of metal/Ge contact.


Schottky Barrier Rapid Thermal Annealing Reverse Current Schottky Barrier Height Rectification Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yamazaki S (1990) Insulated gate field effect transistor and its manufacturing method. ed: Google PatentsGoogle Scholar
  2. 2.
    Lepselter MP, Sze SM (1968) SB-IGFET: an insulated-gate field-effect transistor using Schottky barrier contacts for source and drain. Proc IEEE 56:1400–1402CrossRefGoogle Scholar
  3. 3.
    Ikeda K, Kamimuta Y, Moriyama Y, Ono M, Usuda K, Oda M et al (2013) Enhancement of hole mobility and cut-off characteristics of strained Ge nanowire pMOSFETs by using plasma oxidized GeOx inter-layer for gate stack. In: VLSI technology (VLSIT), 2013 symposium on 2013, pp T30–T31Google Scholar
  4. 4.
    Ikeda K, Ono M, Kosemura D, Usuda K, Oda M, Kamimuta Y et al (2012) High-mobility and low-parasitic resistance characteristics in strained Ge nanowire pMOSFETs with metal source/drain structure formed by doping-free processes. In: VLSI technology (VLSIT), 2012 symposium on, pp 165–166Google Scholar
  5. 5.
    Liu B, Gong X, Han GQ, Lim PSY, Tong Y, Zhou Q et al (2012) High-performance germanium omega-gate mugfet with Schottky-barrier nickel germanide source/drain and low-temperature disilane-passivated gate stack. IEEE Electron Device Lett 33:1336–1338ADSCrossRefGoogle Scholar
  6. 6.
    Xiong SY, King TJ, Bokor J (2005) A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain. IEEE Trans Electron Devices 52:1859–1867ADSCrossRefGoogle Scholar
  7. 7.
    Connelly D, Faulkner C, Grupp DE (2003) Optimizing Schottky S/D offset for 25-nm dual-gate CMOS performance. IEEE Electron Device Lett 24:411–413ADSCrossRefGoogle Scholar
  8. 8.
    Tersoff J (1984) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52:465–468ADSCrossRefGoogle Scholar
  9. 9.
    Zhou Y, Han W, Yong W, Xiu F, Zou J, Kawakami RK et al (2010) Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films. Appl Phys Lett 96:102103–102103-3Google Scholar
  10. 10.
    Heine V (1965) Theory of surface states. Phys Rev 138:A1689ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Nishimura T, Kita K, Toriumi A (2007) Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl Phys Lett 91:123123ADSCrossRefGoogle Scholar
  12. 12.
    Dimoulas A, Toriumi A, Mohney SE (2009) Source and drain contacts for germanium and III–V FETs for digital logic. MRS Bull 34:522–529CrossRefGoogle Scholar
  13. 13.
    Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E (2006) Fermi-level pinning and charge neutrality level in germanium. Appl Phys Lett 89:252110–252110-3Google Scholar
  14. 14.
    Thornton R (1981) Schottky-barrier elevation by ion implantation and implant segregation. Electron Lett 17:485–486ADSCrossRefGoogle Scholar
  15. 15.
    Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J, Kato K (2007) Novel doping technology for a 1nm NiSi/Si junction with dipoles comforting Schottky (DCS) barrier. In: 2007 IEEE international electron devices meeting, vols 1 and 2, pp 963–966Google Scholar
  16. 16.
    Zhen Z, Qiu Z, Ran L, Ostling M, Zhang S-L (2007) Schottky-barrier height tuning by means of ion implantation into preformed silicide films followed by drive-in anneal. IEEE Electron Device Lett 28:565–568ADSCrossRefGoogle Scholar
  17. 17.
    Hoong-Shing W, Lap C, Samudra G, Yee-Chia Y (2007) Effective Schottky barrier height reduction using sulfur or selenium at the NiSi/n-Si (100) interface for low resistance contacts. IEEE Electron Device Lett 28:1102–1104ADSCrossRefGoogle Scholar
  18. 18.
    Mueller M, Zhao Q, Urban C, Sandow C, Buca D, Lenk S et al (2008) Schottky-barrier height tuning of NiGe/n-Ge contacts using As and P segregation. Mater Sci Eng B 154:168–171CrossRefGoogle Scholar
  19. 19.
    Guo Y, An X, Huang R, Fan CH, Zhang X (2010) Tuning of the Schottky barrier height in NiGe/n-Ge using ion-implantation after germanidation technique. Appl Phys Lett 96. 5 Apr 2010Google Scholar
  20. 20.
    Guo Y, An X, Wang R, Zhang X, Huang R (2011) Investigation on morphology and thermal stability of NiGe utilizing ammonium fluoride pretreatment for germanium-based technology. IEEE Electron Device Lett 32(4):554–556ADSCrossRefGoogle Scholar
  21. 21.
    Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New JerseyGoogle Scholar
  22. 22.
    Simoen E, Vanhellemont J (2009) On the diffusion and activation of ion-implanted n-type dopants in germanium. J Appl Phys 106:103516ADSCrossRefGoogle Scholar
  23. 23.
    Zhang Z, Qiu ZJ, Liu R, Östling M, Zhang S-L (2007) Schottky barrier height tuning by means of ion implantation into pre-formed silicide films followed by drive-in anneal. IEEE Electron Device Lett 28(7):565–568ADSCrossRefGoogle Scholar
  24. 24.
    Wittmer M, Seidel T (2008) The redistribution of implanted dopants after metal-silicide formation. J Appl Phys 49:5827–5834ADSCrossRefGoogle Scholar
  25. 25.
    Sze S, Irvin J (1968) Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid-State Electron 11:599–602ADSCrossRefGoogle Scholar
  26. 26.
    Tong Y, Liu B, Lim PSY, Yeo Y-C (2012) Selenium segregation for effective Schottky barrier height reduction in NiGe/n-Ge contacts. IEEE Electron Device Lett 33:773–775ADSCrossRefGoogle Scholar
  27. 27.
    Ikeda K, Yamashita Y, Sugiyama N, Taoka N, Takagi SI (2006) Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation. Appl Phys Lett 88:152115–152115-3Google Scholar
  28. 28.
    Li Zhiqiang, An Xia, Li Min, Yun Quanxin, Lin Meng, Li Ming, Zhang Xing, Huang Ru (2012) Low electron Schottky barrier height of NiGe/Ge achieved by ion-implantation after germanidation technique. IEEE Electron Device Lett 33(12):1687–1689ADSCrossRefGoogle Scholar
  29. 29.
    Li Z, An X, Li M, Yun Q, Lin M, Li M, Zhang X, Huang R (2012) Study on Schottky barrier modulation of NiGe/Ge by ion-implantation after germanidation technique. In: The 11th ICSICT, Xi’anGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of MicroelectronicsPeking UniversityBeijingChina

Personalised recommendations