Skip to main content

Ge-based Schottky Barrier Height Modulation Technology

  • Chapter
  • First Online:
The Source/Drain Engineering of Nanoscale Germanium-based MOS Devices

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Germanium (Ge) has gained a lot of attention for its potential application as an alternative channel material due to its high and symmetric carrier mobilities. However, due to the low solid solubility and high diffusivity of n-type dopants in Ge, it is very challenging to obtain heavily doped shallow junction. Metal source/drain (S/D) is considered as a good approach for the S/D engineering, but the performance of Schottky Barrier (SB) MOSFET is still limited by some factors, and one of which is the severe Fermi-level pinning of metal/Ge contact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamazaki S (1990) Insulated gate field effect transistor and its manufacturing method. ed: Google Patents

    Google Scholar 

  2. Lepselter MP, Sze SM (1968) SB-IGFET: an insulated-gate field-effect transistor using Schottky barrier contacts for source and drain. Proc IEEE 56:1400–1402

    Article  Google Scholar 

  3. Ikeda K, Kamimuta Y, Moriyama Y, Ono M, Usuda K, Oda M et al (2013) Enhancement of hole mobility and cut-off characteristics of strained Ge nanowire pMOSFETs by using plasma oxidized GeOx inter-layer for gate stack. In: VLSI technology (VLSIT), 2013 symposium on 2013, pp T30–T31

    Google Scholar 

  4. Ikeda K, Ono M, Kosemura D, Usuda K, Oda M, Kamimuta Y et al (2012) High-mobility and low-parasitic resistance characteristics in strained Ge nanowire pMOSFETs with metal source/drain structure formed by doping-free processes. In: VLSI technology (VLSIT), 2012 symposium on, pp 165–166

    Google Scholar 

  5. Liu B, Gong X, Han GQ, Lim PSY, Tong Y, Zhou Q et al (2012) High-performance germanium omega-gate mugfet with Schottky-barrier nickel germanide source/drain and low-temperature disilane-passivated gate stack. IEEE Electron Device Lett 33:1336–1338

    Article  ADS  Google Scholar 

  6. Xiong SY, King TJ, Bokor J (2005) A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain. IEEE Trans Electron Devices 52:1859–1867

    Article  ADS  Google Scholar 

  7. Connelly D, Faulkner C, Grupp DE (2003) Optimizing Schottky S/D offset for 25-nm dual-gate CMOS performance. IEEE Electron Device Lett 24:411–413

    Article  ADS  Google Scholar 

  8. Tersoff J (1984) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52:465–468

    Article  ADS  Google Scholar 

  9. Zhou Y, Han W, Yong W, Xiu F, Zou J, Kawakami RK et al (2010) Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films. Appl Phys Lett 96:102103–102103-3

    Google Scholar 

  10. Heine V (1965) Theory of surface states. Phys Rev 138:A1689

    Article  ADS  MATH  Google Scholar 

  11. Nishimura T, Kita K, Toriumi A (2007) Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface. Appl Phys Lett 91:123123

    Article  ADS  Google Scholar 

  12. Dimoulas A, Toriumi A, Mohney SE (2009) Source and drain contacts for germanium and III–V FETs for digital logic. MRS Bull 34:522–529

    Article  Google Scholar 

  13. Dimoulas A, Tsipas P, Sotiropoulos A, Evangelou E (2006) Fermi-level pinning and charge neutrality level in germanium. Appl Phys Lett 89:252110–252110-3

    Google Scholar 

  14. Thornton R (1981) Schottky-barrier elevation by ion implantation and implant segregation. Electron Lett 17:485–486

    Article  ADS  Google Scholar 

  15. Yamauchi T, Nishi Y, Tsuchiya Y, Kinoshita A, Koga J, Kato K (2007) Novel doping technology for a 1nm NiSi/Si junction with dipoles comforting Schottky (DCS) barrier. In: 2007 IEEE international electron devices meeting, vols 1 and 2, pp 963–966

    Google Scholar 

  16. Zhen Z, Qiu Z, Ran L, Ostling M, Zhang S-L (2007) Schottky-barrier height tuning by means of ion implantation into preformed silicide films followed by drive-in anneal. IEEE Electron Device Lett 28:565–568

    Article  ADS  Google Scholar 

  17. Hoong-Shing W, Lap C, Samudra G, Yee-Chia Y (2007) Effective Schottky barrier height reduction using sulfur or selenium at the NiSi/n-Si (100) interface for low resistance contacts. IEEE Electron Device Lett 28:1102–1104

    Article  ADS  Google Scholar 

  18. Mueller M, Zhao Q, Urban C, Sandow C, Buca D, Lenk S et al (2008) Schottky-barrier height tuning of NiGe/n-Ge contacts using As and P segregation. Mater Sci Eng B 154:168–171

    Article  Google Scholar 

  19. Guo Y, An X, Huang R, Fan CH, Zhang X (2010) Tuning of the Schottky barrier height in NiGe/n-Ge using ion-implantation after germanidation technique. Appl Phys Lett 96. 5 Apr 2010

    Google Scholar 

  20. Guo Y, An X, Wang R, Zhang X, Huang R (2011) Investigation on morphology and thermal stability of NiGe utilizing ammonium fluoride pretreatment for germanium-based technology. IEEE Electron Device Lett 32(4):554–556

    Article  ADS  Google Scholar 

  21. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New Jersey

    Google Scholar 

  22. Simoen E, Vanhellemont J (2009) On the diffusion and activation of ion-implanted n-type dopants in germanium. J Appl Phys 106:103516

    Article  ADS  Google Scholar 

  23. Zhang Z, Qiu ZJ, Liu R, Östling M, Zhang S-L (2007) Schottky barrier height tuning by means of ion implantation into pre-formed silicide films followed by drive-in anneal. IEEE Electron Device Lett 28(7):565–568

    Article  ADS  Google Scholar 

  24. Wittmer M, Seidel T (2008) The redistribution of implanted dopants after metal-silicide formation. J Appl Phys 49:5827–5834

    Article  ADS  Google Scholar 

  25. Sze S, Irvin J (1968) Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300 K. Solid-State Electron 11:599–602

    Article  ADS  Google Scholar 

  26. Tong Y, Liu B, Lim PSY, Yeo Y-C (2012) Selenium segregation for effective Schottky barrier height reduction in NiGe/n-Ge contacts. IEEE Electron Device Lett 33:773–775

    Article  ADS  Google Scholar 

  27. Ikeda K, Yamashita Y, Sugiyama N, Taoka N, Takagi SI (2006) Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation. Appl Phys Lett 88:152115–152115-3

    Google Scholar 

  28. Li Zhiqiang, An Xia, Li Min, Yun Quanxin, Lin Meng, Li Ming, Zhang Xing, Huang Ru (2012) Low electron Schottky barrier height of NiGe/Ge achieved by ion-implantation after germanidation technique. IEEE Electron Device Lett 33(12):1687–1689

    Article  ADS  Google Scholar 

  29. Li Z, An X, Li M, Yun Q, Lin M, Li M, Zhang X, Huang R (2012) Study on Schottky barrier modulation of NiGe/Ge by ion-implantation after germanidation technique. In: The 11th ICSICT, Xi’an

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Z. (2016). Ge-based Schottky Barrier Height Modulation Technology. In: The Source/Drain Engineering of Nanoscale Germanium-based MOS Devices. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49683-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49683-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49681-7

  • Online ISBN: 978-3-662-49683-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics