• Huizhong ShenEmail author
Part of the Springer Theses book series (Springer Theses)


The emission inventory was developed using a bottom-up approach based on activity intensity and emission factor as follows.


  1. Alsberg, T., Stenberg, U., Westerholm, R., Strandell, M., Rannug, U., Sundvall, A., et al. (1985). Chemical and biological characterization of organic material from gasoline exhaust particles. Environmental Science and Technology, 19(1), 43–50.CrossRefGoogle Scholar
  2. Bain, C., Feskanich, D., Speizer, F. E., Thun, M., Hertzmark, E., Rosner, B. A., et al. (2004). Lung cancer rates in men and women with comparable histories of smoking. Journal of the National Cancer Institute, 96, 826–834.CrossRefGoogle Scholar
  3. Bartlett, C. J. S., Betts, W. E., Giavazzi, F., Guttmann, H., Heinze, P., Mayers, R. F., et al. (1992). The chemical composition of diesel particulate emissions. CONCAWE, Brussels, Report no. 92/51.Google Scholar
  4. Benner, B. A., Gordon, G. E., & Wise, S. A. (1989). Mobile sources of atmospheric polycyclic aromatic hydrocarbons: A roadway tunnel study. Environmental Science and Technology, 23(10), 1269–1278.CrossRefGoogle Scholar
  5. Bergvall, C., & Westerholm, R. (2009). Determination of highly carcinogenic dibenzopyrene isomers in particulate emissions from two diesel- and two gasoline-fuelled light-duty vehicles. Atmospheric Environment, 43(25), 3883–3890.CrossRefGoogle Scholar
  6. Beyea, J., Stellman, S. D., Hatch, M., & Gammon, M. D. (2008). Airborne emissions from 1961 to 2004 of benzo[a]pyrene from U.S. vehicles per km of travel based on tunnel studies. Environmental Science and Technology, 42(19), 7315–7320.CrossRefGoogle Scholar
  7. Boldrini, L., Gisfredi, S., Ursino, S., Lucchi, M., Greco, G., Mussi, A., et al. (2008). Effect of the p53 codon 72 and intron 3 polymorphisms on non-small cell lung cancer (NSCLC) prognosis. Cancer Investigation, 26, 168–172.CrossRefGoogle Scholar
  8. Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. (2004). A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres, 109(D14).Google Scholar
  9. Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., et al. (2007). Historical emissions of black and organic carbon aerosol from energy-related combustion. Global Biogeochemical Cycles, 21, 1850–2000, GB2018, doi: 10.1029/2006GB002840.
  10. Boström, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110, 451–488.CrossRefGoogle Scholar
  11. Cadle, S. H., Mulawa, P. A., Hunsanger, E. C., Nelson, K., Ragazzi, R. A., Barrett, R., et al. (1999). Composition of light-duty motor vehicle exhaust particulate matter in the Denver. Colorado area. Environmental Science and Technology, 33(14), 2328–2339.CrossRefGoogle Scholar
  12. California Environmental Protection Agency (2014). Technical support document for cancer potency factors: Methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures. Retrieved from
  13. Carbon Monitoring for Action (CARMA) (2013). CARMA Notes: Data Accuracy. Retrieved from
  14. Centers for Disease Control and Prevention (2014). CDC health disparities and inequalities report—United States, 2011. Retrieved from
  15. Chellam, S., Kulkarni, P., & Fraser, M. P. (2005). Emissions of organic compounds and trace metals in fine particulate matter from motor vehicles: A tunnel study in Houston, Texas. Journal of the Air and Waste Management Association, 55(1), 60–72.CrossRefGoogle Scholar
  16. China Energy Group (2008). China Energy Databook Version 7.0. Berkeley, California: Lawrence Berkeley Laboratory and Energy Research Institute.Google Scholar
  17. Ciais, P., Paris, J. D., Marland, G., Peylin, P., Piao, S. L., Pregger, T., et al. (2010). The European carbon balance. Part 1: Fossil fuel emissions. Global Change Biology, 16, 1395–1408.CrossRefGoogle Scholar
  18. Dachs, J., Lohmann, R., Ockenden, W. A., Méjanelle, L., Eisenreich, S. J., & Jones, K. C. (2002). Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environmental Science Technology, 36(20), 4229–4237.CrossRefGoogle Scholar
  19. Dai, L., Duan, F., Wang, P., Song, C., Wang, K., & Zhang, J. (2012). XRCC1 gene polymorphisms and lung cancer susceptibility: A meta-analysis of 44 case-control studies. Molecular Biology Reports, 39, 9535–9547.CrossRefGoogle Scholar
  20. Davis, S. C., Diegel, S. W., & Boundy, R. G. (2010). Transportation Energy Data Book: Edition 28. U.S. Department of Energy. Retrieved from
  21. De Abrantes, R., De Assuncao, J. V., & Pesquero, U. R. (2004). Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust. Atmospheric Environment, 38(11), 1631–1640.CrossRefGoogle Scholar
  22. Ding, D., Zhang, Y., Yu, H., Guo, Y., Jiang, L., He, X., et al. (2012). Genetic variation of XPA gene and risk of cancer: A systematic review and pooled analysis. International Journal of Cancer, 131, 486–488.CrossRefGoogle Scholar
  23. Duan, W. X., Hua, R. X., Yi, W., Shen, L. J., Jin, Z. X., Zhao, Y. H., et al. (2012). The association between OGG1 Ser326Cys polymorphism and lung cancer susceptibility: A meta-analysis of 27 studies. PLoS ONE, 7, e35970.CrossRefGoogle Scholar
  24. Duan, X. L. (2012). Research methods of exposure factors and its application in environmental health risk assessment (pp. 122–129). Beijing, China: Beijing Science Press.Google Scholar
  25. Durbin, T. D., Truex, T. J., & Norbeck, J. M. (1998). Particulate measurements and emissions characterization of alternative fuel vehicle exhaust. National Renewable Energy Laboratory, Golden, Colorado, NREL/SR-540-25741.Google Scholar
  26. Emmons, L. K., Apel, E. C., Lamarque, J. F., Hess, P. G., Avery, M., Blake, D., et al. (2010). Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 10(13), 6195–6212.CrossRefGoogle Scholar
  27. Endresen, Ø. E., Sørgård, H. L., Behrens, P. O., Brett, P. O., & Isaksen, I. S. A. (2007). A historical reconstruction of ships’ fuel consumption and emissions. Journal of Geophysical Research, 112, D12301. doi: 10.1029/2006JD007630.CrossRefGoogle Scholar
  28. Environment Australia (EA) (2003). Technical report No. 1: Toxic emissions from diesel vehicles in Australia. Retrieved from
  29. ESRI Inc (2014). ArcGIS for Desktop. Retrieved from
  30. Esteve, W., Budzinski, H., & Villenave, E. (2006). Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmospheric Environment, 40(2), 201–211.CrossRefGoogle Scholar
  31. Expert Panel on Air Quality Standards (1999). Choice of a marker compound for polycyclic aromatic hydrocarbon. Retrieved from 20060715141954/
  32. Ezzati, M., & Lopez, A. D. (2003). Estimates of global mortality attributable to smoking in 2000. Lancet, 362, 847–852.CrossRefGoogle Scholar
  33. Fenelon, A. & Preston, S. H. (2011). Estimating smoking-attributable mortality in the United States. Demography, 49.Google Scholar
  34. Feng, Z., Ni, Y., Dong, W., Shen, H., & Du, J. (2012). Association of ERCC2/XPD polymorphisms and interaction with tobacco smoking in lung cancer susceptibility: A systemic review and meta-analysis. Molecular Biology Reports, 39, 59–69.Google Scholar
  35. Food and Agriculture Organization of the United Nations (FAO) (2012). FAOSTAT. Retrieved from
  36. Fraser, M. P., Cass, G. R., & Simoneit, B. R. T. (1998). Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel. Environmental Science and Technology, 32(14), 2051–2060.CrossRefGoogle Scholar
  37. Fujita, E. M., Campbell, D. E., Arnott, W. P., Chow, J. C., & Zielinska, B. (2007). Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols. Journal of the Air and Waste Management Association, 57(6), 721–740.CrossRefGoogle Scholar
  38. Gaspar, P. A., Hutz, M. H., Salzano, F. M., Hill, K., Hurtado, A. M., Petzl-Erler, M. L., et al. (2002). Polymorphisms of CYP1A1, CYP2E1, GSTM1, GSTT1, and TP53 genes in Amerindians. American Journal of Physical Anthropology, 119(3), 249–256.CrossRefGoogle Scholar
  39. GENISIM (2012). Aluminum Smelters. Retrieved from
  40. Guan, P., Huang, D., Yin, Z., & Zhou, B. (2011). Association of the hOGG1 Ser326Cys polymorphism with increased lung cancer susceptibility in Asians: A meta-analysis of 18 studies including 7592 cases and 8129 controls. Asian Pacific Journal of Cancer Prevention, 12, 1067–1072.Google Scholar
  41. Haiman, C. A., Stram, D. O., Wilkens, L. R., Pike, M. C., Kolonel, L. N., Henderson, B. E., et al. (2006). Ethnic and racial differences in the smoking-related risk of lung cancer. The New England Journal of Medicine, 354, 333–342.CrossRefGoogle Scholar
  42. Handa, T., Yamauchi, T., Sawai, K., Yamamura, T., Koseki, Y., & Ishii, T. (2002). In situ emission levels of carcinogenic and mutagenic compounds from diesel and gasoline engine vehicles on an expressway. Environmental Science and Technology, 18(12), 895–902.CrossRefGoogle Scholar
  43. HARP-HAZ (2000). Guidance document on quantification and reporting on discharges/emissions/losses of polycyclic aromatic hydrocarbons (PAH). Norway: HARP-HAZ project.Google Scholar
  44. Health Canada (2014). Federal contaminated site risk assessment in Canada, part I: guidance on human health preliminary quantitative risk assessment (PQRA), Version 2.0. Retrieved from
  45. Herath, N. I., Kew, M. C., Whitehall, V. L., Walsh, M. D., Jass, J. R., Khanna, K. K., et al. (2000). p73 is up-regulated in a subset of hepatocellular carcinomas. Hepatology, 31, 601–605.CrossRefGoogle Scholar
  46. Hrstka, R., Coates, P. J., & Vojtesek, B. (2009). Polymorphisms in p53 and the p53 pathway: Roles in cancer susceptibility and response to treatment. Journal of Cellular and Molecular Medicine, 13, 440–453.CrossRefGoogle Scholar
  47. Infobank (2010). China content provider. Retrieved from
  48. Institute for Health and Consumer Protection (2014). European Exposure Factors Database. Retrieved from
  49. International Energy Agency (2011). IEA World Energy Statistics and Balances. Retrieved from
  50. Jorde, L. B., & Wooding, S. P. (2004). Genetic variation, classification and ‘race’. Nature Genetics, 36, S28–S33.CrossRefGoogle Scholar
  51. Kado, N. Y., Okamoto, R. A., Kuzmicky, P. A., Kobayashi, R., Ayala, A., Gebel, M. E., et al. (2005). Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles. Environmental Science and Technology, 39(19), 7638–7649.CrossRefGoogle Scholar
  52. Kahan, T. F., Kwamena, N.-O. A., & Donaldson, D. J. (2006). Heterogeneous ozonation kinetics of polycyclic aromatic hydrocarbons on organic films. Atmospheric Environment, 40, 3448–3459.CrossRefGoogle Scholar
  53. Kalnay, E., Kanamitsu, K., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.CrossRefGoogle Scholar
  54. Karavalakis, G., Alvanou, F., Stournas, S., & Bakeas, E. (2009). Regulated and unregulated emissions of a light duty vehicle operated on diesel/palm-based methyl ester blends over NEDC and a non-legislated driving cycle. Fuel, 88(6), 1078–1085.CrossRefGoogle Scholar
  55. Kim, J. M., Lee, O. Y., Lee, C. G., Kwon, S. J., Kim, K. S., Moon, W., et al. (2007). p53 codon 72 and 16-bp duplication polymorphisms of gastric cancer in Koreans. The Korean Journal of Gastroentrerology, 50(5), 292–298.Google Scholar
  56. Kim, S., Cheong, H. K., Choi, K., Yang, J. Y., Kim, S. J., Jo, S. N., & Jang, J. Y. (2006). Development of Korean exposure factors handbook for exposure assessment. Epidemiology, 17, S460.CrossRefGoogle Scholar
  57. Kiyohara, C., Otsu, A., Shirakawa, T., Fukuda, S., & Hopkin, J. M. (2002). Genetic polymorphisms and lung cancer susceptibility: A review. Lung Cancer, 37, 241–256.CrossRefGoogle Scholar
  58. Kiyohara, C., Yoshimasu, K., Takayama, K., & Nakanishi, Y. (2005). NQO1, MPO, and the risk of lung cancer: A HuGE review. Genetics IN Medicine, 7, 463–478.CrossRefGoogle Scholar
  59. Kristensson, A., Johansson, C., Westerholm, R., Swietlicki, E., Gidhagen, L., Wideqvist, U., et al. (2004). Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm. Sweden Atmospheric Environment, 38(5), 657–673.CrossRefGoogle Scholar
  60. Lammel, G., Sehili, A. M., Bond, T. C., Feichter, J., & Grassl, H. (2009). Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons—a modelling approach. Chemosphere, 76, 98–106.CrossRefGoogle Scholar
  61. Landi, S., Gemignani, F., Monnier, S., & Canzian, F. (2005). A database of singe-nucleotide polymorphisms and a genotyping microarray for genetic epidemiology of lung cancer. Experimental Lung Research, 31, 223–257.CrossRefGoogle Scholar
  62. Layton, D. W. (1993). Metabolically consistent breathing rates for use in dose assessments. Health Physics, 64, 23–36.CrossRefGoogle Scholar
  63. Leonidas, N., & Zissis, S. (2000). COPERT III (pp. 76–77). Copenhagen: Computer programme to calculate emissions from road transport. European Envirment Agency.Google Scholar
  64. Lim, M. C. H., Ayoko, G. A., Morawska, L., Ristovski, Z. D., & Jayaratne, E. R. (2007). Influence of fuel composition on polycyclic aromatic hydrocarbon emissions from a fleet of in-service passenger cars. Atmospheric Environment, 41(1), 150–160.CrossRefGoogle Scholar
  65. Lohmann, R., & Lammel, G. (2004). Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Environmental Science and Technology, 38(14), 3793–3803.CrossRefGoogle Scholar
  66. Ma, J. M., Daggupaty, S., Harner, T., & Li, Y. F. (2003). Impacts of lindane usage in the Canadian prairies on the Great Lakes ecosystem. 1. Coupled atmospheric transport model and modeled concentrations in air and soil. Environmental Science Technology, 37(17), 3774–3781.Google Scholar
  67. Marr, L. C., Kirchstetter, T. W., Harley, R. A., Miguel, A. H., Hering, S. V., & Hammond, S. K. (1999). Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science and Technology, 33(18), 3091–3099.CrossRefGoogle Scholar
  68. Matakidou, A., Eisen, T., & Houlston, R. S. (2003). TP53 polymorphisms and lung cancer risk: A systematic review and meta-analysis. Mutagenesis, 18, 377–385.CrossRefGoogle Scholar
  69. Mi, H.-H., Lee, W.-J., Tsai, P.-J., & Chen, C.-B. (2001). A comparison on the emission of polycyclic aromatic hydrocarbons and their corresponding carcinogenic potencies from a vehicle engine using leaded and lead-free gasoline. Environmental Health Perspectives, 109(12), 1285.CrossRefGoogle Scholar
  70. Microsoft Corporation (2014). All Office products. Retrieved from
  71. Miguel, A. H., Kirchstetter, T. W., Harley, R. A., & Hering, S. V. (1998). On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science and Technology, 32(4), 450–455.CrossRefGoogle Scholar
  72. Nakićenović, N., Alcamo, J., Davis, G., Vries, B. D., Fenhann, J., Gaffin, S., et al. (2000). Emissions scenarios: A special report of working Group III of the Inter-governmental panel on climate change. New York: Cambridge University Press.Google Scholar
  73. National Academy of Sciences (1983). Polycyclic aromatic hydrocarbons: evaluation of sources and effects. Washington, DC. ISBN 978-0-309-07758-3.Google Scholar
  74. National Institute of Advanced Industrial Science and Technology (2014). Japanese Exposure Factors Handbook. Retrieved from
  75. National Oceanic and Atmospheric Administration (NOAA) (2012). Global Gas Flaring Estimates. Retrieved from
  76. Nelson, P. F., Tibbett, A. R., & Day, S. J. (2008). Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles. Atmospheric Environment, 42(21), 5291–5303.CrossRefGoogle Scholar
  77. Nerurkar, P. V., Okinaka, L., Aoki, C., Seifried, A., Lum-Jones, A., Wilkens, L. R., et al. (2000). CYP1A1, GSTM1, ad GSTP1 genetic polymorphisms and urinary 1-hydroxypyrene excretion in non-occupationally exposed individuals. Cancer Epidemiology, Biomarkers and Prevention, 9, 1119–1122.Google Scholar
  78. Ning, Z., Polidori, A., Schauer, J. J., & Sioutas, C. (2008). Emission factors of PM species based on freeway measurements and comparison with tunnel and dynamometer studies. Atmospheric Environment, 42(13), 3099–3114.CrossRefGoogle Scholar
  79. Norbeck, J. M., Durbin, T. D., & Truex, T. J. (1998). Measurement of primary particulate matter emissions from light-duty motor vehicles. Coordinating Research Council, Inc. and South Coast Air Quality Management District, CRC Project no. E-24-2.Google Scholar
  80. Oak Ridge National Laboratory (ORNL) (2014). LandScan Global Population 2007 Database. Retrieved from
  81. Pakbin, P., Ning, Z., Schauer, J. J., & Sioutas, C. (2009). Characterization of Particle Bound Organic Carbon from Diesel Vehicles Equipped with Advanced Emission Control Technologies. Environmental Science and Technology, 43(13), 4679–4686.CrossRefGoogle Scholar
  82. Perneger, T. V. (2001). Sex, smoking, and cancer: a reappraisal. Journal of the National Cancer Institute, 93, 1600–1602.CrossRefGoogle Scholar
  83. Phuleria, H. C., Geller, M. D., Fine, P. M., & Sioutas, C. (2006). Size-resolved emissions of organic tracers from light-and heavy-duty vehicles measured in a California roadway tunnel. Environmental Science and Technology, 40(13), 4109–4118.CrossRefGoogle Scholar
  84. Riddle, S. G., Jakober, C. A., Robert, M. A., Cahill, T. M., Charles, M. J., & Kleeman, M. J. (2007a). Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmospheric Environment, 41(38), 8658–8668.CrossRefGoogle Scholar
  85. Riddle, S. G., Robert, M. A., Jakober, C. A., Hannigan, M. P., & Kleeman, M. J. (2007b). Size distribution of trace organic species emitted from heavy-duty diesel vehicles. Environmental Science and Technology, 41(6), 1962–1969.CrossRefGoogle Scholar
  86. Riddle, S. G., Robert, M. A., Jakober, C. A., Hannigan, M. P., & Kleeman, M. J. (2007c). Size distribution of trace organic species emitted from light-duty gasoline vehicles. Environmental Science and Technology, 41(21), 7464–7471.CrossRefGoogle Scholar
  87. Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol.2. noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science and Technology, 27(4), 636–651.CrossRefGoogle Scholar
  88. Sagebiel, J. C., Zielinska, B., Walsh, P. A., Chow, J. C., Cadle, S. H., Mulawa, P. A., et al. (1997). PM-10 exhaust samples collected during IM-240 dynamometer tests of in-service vehicles in Nevada. Environmental Science and Technology, 31(1), 75–83.CrossRefGoogle Scholar
  89. Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (1999). Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environmental Scienece & Technology, 33(10), 1578–1587.Google Scholar
  90. Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. T. (2002). Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasoline-powered motor vehicles. Environmental Science and Technology, 36(6), 1169–1180.CrossRefGoogle Scholar
  91. Shen, H. Z., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., et al. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science and Technology, 47, 6415–6424.Google Scholar
  92. Shen, H. Z., Tao, S., Liu, J., Huang, Y., Chen, H., Li, W., et al. (2014). Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Scientific Reports,. doi: 10.1038/srep06561.Google Scholar
  93. Shen, H. Z., Tao, S., Wang, R., Wang, B., Shen, G. F., Li, W., et al. (2011). Global time trends in PAH emissions from motor vehicles. Atmospheric Environment, 45, 2067–2073.CrossRefGoogle Scholar
  94. Siegfried, J. M. (2001). Women and lung cancer: Does oestrogen play a role? The lancet Oncology, 2, 506–513.CrossRefGoogle Scholar
  95. Siegl, W. O., Hammerle, R. H., Herrmann, H. M., Wenclawiak, B. W., & Luers-Jongen, B. (1999). Organic emissions profile for a light-duty diesel vehicle. Atmospheric Environment, 33(5), 797–805.CrossRefGoogle Scholar
  96. Själander, A., Birgander, R., Saha, N., Beckman, L., & Beckman, G. (1996). p53 polymorphisms and haplotypes show distinct differences between major ethnic groups. Human Heredity, 46(1), 41–48.CrossRefGoogle Scholar
  97. Staehelin, J., Keller, C., Stahel, W., Schlapfer, K., & Wunderli, S. (1998). Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part III: Results of organic compounds, SO2 and speciation of organic exhaust emission. Atmospheric Environment, 32(6), 999–1009.CrossRefGoogle Scholar
  98. Tang, S., Frank, B. P., Lanni, T., Rideout, G., Meyer, N., & Beregszaszy, C. (2007). Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems. Environmental Science and Technology, 41(14), 5037–5043.CrossRefGoogle Scholar
  99. Task Force on Hemispheric Transport of Air Pollution (2014). Theme 2: Source apportionment and source/receptor analysis. Retrieved from
  100. The Department of Health (2014). Australian exposure factor guidance. Retrieved from
  101. The Energy and Resources Institute (TERI). (2008). TERI Energy data directory and yearbook, 2007. New Delhi, India: TERI Press.Google Scholar
  102. The World Bank (2010). World Development Indicators. Retrieved from
  103. The World Factbook (2014). Central Intelligence Agency. Retrieved from
  104. U.S. Energy Information Administration (2012). International Energy Statistics. Retrieved from
  105. U.S. Geological Survey (USGS) (2012). Commodity Statistics and Information. Retrieved from
  106. U.S. Geological Survey (USGS) (2012). Primary Aluminum Plants Worldwide-1998. Retrieved from
  107. United Nations Industrial Development Organization (UNIDO). (2008). International yearbook of industrial statistics 2008. Cheltenham, U.K: Edward Elgar Publishing.Google Scholar
  108. United Nations Statistics Division (UNSD) (2011). Environmental Indicators: Waste. Retrieved from
  109. United States Cancer Statistics (USCS) (2014). National Program of Cancer Registries. Retrieved from
  110. United States Environmental Protection Agency (USEPA) (1995). Appendix H: Highway Mobile Source Emission Factors Tables. Retrieved from
  111. United States Environmental Protection Agency (USEPA) (2011). Exposure factors handbook (2011 ed.). EPA/600/R-09/052F.Google Scholar
  112. van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., et al. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707–11735.CrossRefGoogle Scholar
  113. Walpole, S. C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G., & Roberts, L. (2012). The weight of nations: An estimation of adult human biomass. BMC Public Health, 12, 439.CrossRefGoogle Scholar
  114. Wang, B. G., Lu, W. M., Zhou, Y., Shao, M., & Zhang, Y. H. (2007). Emission characteristic of PAHs composition in motor vehicles exhaust of city tunnel. China Environmental Science, 27(4), 482–487.Google Scholar
  115. Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., et al. (2013). High-resolution mapping of combustion processes and implications for CO2 emissions. Atmospheric Chemistry and Physics, 13(10), 5189–5203.CrossRefGoogle Scholar
  116. Wang, W., Li, H., Liu, H. J., Yue, X., Pan, Z., Wang, Y., et al. (2002). In Characterization of polycyclic aromatic hydrocarbons in PM exhaust from light-duty vehicles. The Ninth Nation Conference on Atmospheric Environment, Beijing.Google Scholar
  117. Westerholm, R. N., Almen, J., Li, H., Rannug, J. U., Egebaeck, K. E., & Graegg, K. (1991). Chemical and biological characterization of particulate-, semivolatile-, and gas-phase-associated compounds in diluted heavy-duty diesel exhausts: A comparison of three different semivolatile-phase samplers. Environmental Science and Technology, 25(2), 332–338.CrossRefGoogle Scholar
  118. Westerholm, R. N., Alsberg, T. E., Frommelin, A. B., Strandell, M. E., Rannug, U., Winquist, L., et al. (1988). Effect of fuel polycyclic aromatic hydrocarbon content on the emissions of polycyclic aromatic hydrocarbons and other mutagenic substances from a gasoline-fueled automobile. Environmental Science and Technology, 22(8), 925–930.CrossRefGoogle Scholar
  119. Westerholm, R., & Egeback, K. E. (1994). Exhaust emissions from light-duty and heavy-duty vehicles—chemical-composition, impact of exhaust after treatment, and fuel parameters. Environmental Health Perspectives, 102, 13–23.CrossRefGoogle Scholar
  120. Westerholm, R., & Li, H. (1994). A multivariate statistical-analysis of fuel-related polycyclic aromatic hydrocarbon emissions from heavy-duty diesel vehicles. Environmental Science and Technology, 28(5), 965–972.CrossRefGoogle Scholar
  121. Westerholm, R., Almen, J., Li, H., Rannug, U., & Rosen, A. (1992). Exhaust emissions from gasoline-fueled light duty vehicles operated in different driving conditions—a chemical and biological characterization. Atmospheric Environment Part B, 26(1), 79–90.CrossRefGoogle Scholar
  122. Westerholm, R., Christensen, A., & Rosen, A. (1996). Regulated and unregulated exhaust emissions from two three-way catalyst equipped gasoline fuelled vehicles. Atmospheric Environment, 30(20), 3529–3536.CrossRefGoogle Scholar
  123. Westerholm, R., Christensen, A., Tornqvist, M., Ehrenberg, L., Rannug, U., Sjogren, M., et al. (2001). Comparison of exhaust emissions from Swedish environmental classified diesel fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) reference fuel: A chemical and biological characterization with viewpoints on cancer risk. Environmental Science and Technology, 35(9), 1748–1754.CrossRefGoogle Scholar
  124. Wingfors, H., Sjodin, A., Haglund, P., & Brorstrom-Lunden, E. (2001). Characterisation and determination of profiles of polycyclic aromatic hydrocarbons in a traffic tunnel in Gothenburg. Sweden Atmospheric Environment, 35(36), 6361–6369.CrossRefGoogle Scholar
  125. World Health Organization (2014). Global Health Observatory Data Repository. Retrieved from
  126. World Health Organization (2014). Global Health Observatory Data Repository. Retrieved from
  127. World Steel Association (2012). Retrieved from
  128. Xu, S. S., Liu, W. X., & Tao, S. (2006). Emission of polycyclic aromatic hydrocarbons in China. Environmental Science and Technology, 40(3), 702–708.CrossRefGoogle Scholar
  129. Yang, H. H., Hsieh, L. T., Liu, H. C., & Mi, H. H. (2005). Polycyclic aromatic hydrocarbon emissions from motorcycles. Atmospheric Environment, 39(1), 17–25.CrossRefGoogle Scholar
  130. Yu, W., Clyne, M., Khoury, M. J., & Gwinn, M. (2010). Phenopedia and genopedia: Disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics, 26, 145–146 (2010).Google Scholar
  131. Zhan, P., Wang, Q., Qian, Q., Wei, S. Z., & Yu, L. K. (2011). CYP1A1 MspI and exon7 gene polymorphisms and lung cancer risk: An updated meta-analysis and review. Journal of Experimental and Clinical Cancer Research, 30, 99.CrossRefGoogle Scholar
  132. Zhang, L., Wang, J., Xu, L., Zhou, J., Guan, X., Jiang, F., et al. (2012). Nucleotide excision repair gene ERCC1 polymorphisms contribute to cancer susceptibility: A meta-analysis. Mutagenesis, 27, 67–76.CrossRefGoogle Scholar
  133. Zhang, Y., Song, H., Higgens, J. P. T., Pharoah, P., & Danesh, J. (2006). Five Glutathione S-Transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: Meta-analysis of 130 studies. PLoS Medicine, 3, 0524–0534.Google Scholar
  134. Zhu, D., Tao, S., Wang, R., Shen, H. Z., Huang, Y., Shen, G. F., et al. (2013). Temporal and spatial trends of residential energy consumption and air pollutant emissions in China. Applied Energy, 106, 17–24.CrossRefGoogle Scholar
  135. Zielinska, B., Sagebiel, J., Mcdonald, J. D., Whitney, K., & Lawson, D. R. (2003). Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. 4th Colloquium on PM and Human Health, 54, 1138–1150.Google Scholar
  136. Zou, J. H., An, L., Chen, S., & Ren, L. Q. (2012). XPA A23G polymorphism and lung cancer risk: A meta-analysis. Molecular Biology Reports, 39, 1435–1440.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory for Earth Surface Processes, College of Urban and Environmental SciencesPeking UniversityBeijingChina

Personalised recommendations