Research Background

  • Huizhong ShenEmail author
Part of the Springer Theses book series (Springer Theses)


Polycyclic aromatic hydrocarbons (PAHs) are a class of organic chemicals, which include carbon and hydrogen with a fused ring structure containing at least 2 benzene rings.


Emission Factor Inhalation Exposure High Molecular Weight PAHs Peat Fire Industrial Boiler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armstrong, B., Hutchinson, E., Unwin, J., & Fletcher, T. (2004). Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environmental Health Perspectives, 112, 970–978.CrossRefGoogle Scholar
  2. Asian Development Bank (ADB). (2003). Reducing vehicle emissions in Asia (pp. 14–22). Philippines: Manila.Google Scholar
  3. Baek, S. O., Field, R. A., Goldstone, M. E., Kirk, P. W., Lester, J. N., & Perry, R. (1991). A review of atmospheric polycyclic aromatic-hydrocarbons-sources, fate and behavior. Water, Air, and Soil Pollution, 60(3–4), 279–300.CrossRefGoogle Scholar
  4. Berdowski J. J. M., Baas J., Bloos J. P. J., Visschedijk A. J. H., & Zandweld P. Y. J. (1997). The European Emission Inventory of Heavy Metals and Persistent Organic Pollutants for 1990. TNO Institute of Environmental Sciences, Energy Research and Process Innovation.Google Scholar
  5. Björseth, A., Lunde, G., & Lindskog, A. (1979). Long-range transport of polycyclic aromatic-hydrocarbons. Atmospheric Environment, 13(1), 45–53.CrossRefGoogle Scholar
  6. Boffetta, P., Jourenkova, N., & Gustavsson, P. (1997). Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes and Control, 8, 444–472.CrossRefGoogle Scholar
  7. Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., & Klimont, Z. (2004). A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research-Atmospheres, 109(D14).Google Scholar
  8. Boström, C. E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., et al. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110, 451–488.CrossRefGoogle Scholar
  9. Brubaker, W. W., & Hites, R. A. (1998). OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. Journal of Physical Chemistry, 102, 915–921.CrossRefGoogle Scholar
  10. Dipple, A. (1985). Polycyclic aromatic hydrocarbon carcinogenesis: An introduction. In R. G. Harvey (Ed.), Polycyclic Hydrocarbons and Carcinogenesis (pp. 1–17). Washington, DC: American Chemical Society.Google Scholar
  11. Ehrenberg L., & Scalia-Tomba G. (1991). Mathematical models for the initiating and promotive action of carcinogens. In L. Hothorn (Ed.), Statistical Methods in Toxicology (Lecture Notes in Medical Informatics) (pp. 65–78). Berlin: Springer.Google Scholar
  12. Esteve, W., Budzinski, H., & Villenave, E. (2006). Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmospheric Environment, 40(2), 201–211.CrossRefGoogle Scholar
  13. European Monitoring and Evaluation Programme (EMEP). (2011). Centre on emission inventories and projections. Retrieved from
  14. European Monitoring and Evaluation Programme (EMEP). (2012). EMEP POP data. Retrieved from
  15. Friedman, C. L., & Selin, N. E. (2012). Long-range atmospheric transport of polycyclic aromatic hydrocarbons: A global 3-D model analysis including evaluation of Arctic sources. Environmental Science and Technology, 46(17), 9501–9510.CrossRefGoogle Scholar
  16. Friedman, C. L., Zhang, Y., & Selin, N. E. (2014). Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environmental Science and Technology, 48(1), 429–437.CrossRefGoogle Scholar
  17. Galarneau, E., Makar, P. A., Sassi, M., & Diamond, M. L. (2007). Estimation of atmospheric emissions of six semivolatile polycyclic aromatic hydrocarbons in southern Canada and the United States by use of an emissions processing system. Environmental Science and Technology, 41(12), 4205–4213.CrossRefGoogle Scholar
  18. Great Lakes Comm. (2007). Assessment of Benzo[a]pyrene Air Emissions in the Great Lakes Region. Great Lakes Regional Toxic Air Emissions Inventory Steering Committee.Google Scholar
  19. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.CrossRefGoogle Scholar
  20. International Agency for Research on Cancer (IARC). (1984a). Polynuclear Aromatic Compounds. Part 2. Carbon Blacks, Mineral Oils and Some Nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 33. Lyon, France.Google Scholar
  21. International Agency for Research on Cancer (IARC). (1984b). Polynuclear Aromatic Compounds, Part 3, Industrial Exposures in Aluminium Production, Coal Gasification, Coke Production, and Iron and Steel Founding. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 34. Lyon, France.Google Scholar
  22. International Agency for Research on Cancer (IARC). (1985). Polynuclear Aromatic Compounds. Part 4. Bitumens, Coal-tars and Derived Products, Shale-oils and Soots. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 35. Lyon, France.Google Scholar
  23. International Agency for Research on Cancer (IARC). (1987). Tobacco Smoking. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 38. Lyon, France.Google Scholar
  24. International Agency for Research on Cancer (IARC). (1989). Occupational Exposures in Petroleum Refining; Crude Oil and Major Petroleum Fuels. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 45. Lyon, France.Google Scholar
  25. International Agency for Research on Cancer (IARC). (2014). Agents classified by the IARC monographs, volumes 1–109. Retrieved from
  26. Kado, N. Y., Okamoto, R. A., Kuzmicky, P. A., Kobayashi, R., Ayala, A., Gebel, M. E., et al. (2005). Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles. Environmental Science and Technology, 39(19), 7638–7649.CrossRefGoogle Scholar
  27. Kelly, M. E. (1983). Sources and Emissions of Polycyclic Organic Matter. U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (pp. 5-9–5-44). EPA Report No. 450/5-83-010b.Google Scholar
  28. Kristensson, A., Johansson, C., Westerholm, R., Swietlicki, E., Gidhagen, L., Wideqvist, U., et al. (2004). Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm. Sweden. Atmospheric Environment, 38(5), 657–673.CrossRefGoogle Scholar
  29. Lammel, G., Sehili, A. M., Bond, T. C., Feichter, J., & Grassl, H. (2009). Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons – a modelling approach. Chemosphere, 76, 98–106.CrossRefGoogle Scholar
  30. Lammel, G., Heil, A., Stemmler, I., Dvorska, A., & Klanova, J. (2013). On the contribution of biomass burning to POPs (PAHs and PCDDs) in air in Africa. Environmental Science and Technology, 47(20), 11616–11624.CrossRefGoogle Scholar
  31. Law of the People’s Republic of China on the Coal Industry. (1996). Order of the President of the People’s Republic of China, No. 75.Google Scholar
  32. Lohmann, R., & Lammel, G. (2004). Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: State of knowledge and recommended parametrization for modeling. Environmental Science and Technology, 38(14), 3793–3803.CrossRefGoogle Scholar
  33. Lunde, G., & Björseth, A. (1977). Polycyclic aromatic hydrocarbons in long-range transported aerosols. Nature, 268, 518–519.CrossRefGoogle Scholar
  34. Mead, R. C., Brooks, G. W., & Post, B. K. (1986). Summary of Trace Emissions from and Recommendations of Risk Assessment Methodologies for Coal and Oil Combustion Sources. Prepared for U.S. Environmental Protection Agency, Pollutant Assessment Branch, Research Triangle Park, North Carolina. EPA Contract No. 68-02-3889, Work Assignment 41.Google Scholar
  35. Muller, P. (1997). Scientific Criteria Document for Multimedia Standards Development Polycyclic Aromatic Hydrocarbons (PAH). Part 1: Hazard Identification and Dose-Response Assessment. Ontario, CN: Standard Development Branch, Ontario Ministry of Environment and Energy.Google Scholar
  36. National Atmospheric Emissions Inventory (NAEI). (2011). Retrieved from
  37. Pacyna, J. M., Breivik, K., Munch, J., & Fudala, J. (2003). European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmospheric Environment, 37, S119–S131.CrossRefGoogle Scholar
  38. Perera, F. P. (1997). Environment and cancer: Who are susceptible? Science, 278, 1068–1073.CrossRefGoogle Scholar
  39. Pitot, H. C., & Dragan, Y. P. (1996). Chemical carcinogenesis. In C. D. Klaassen (Ed.) Casarett and Doull’s Toxicology (pp. 201–267). New York: McGraw-Hill.Google Scholar
  40. Pott, P. (1775). Chirurgical observations. Reproduced in: National Cancer Institute Monograph 1963, 7–13. Research on Cancer.Google Scholar
  41. Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.CrossRefGoogle Scholar
  42. Riddle, S. G., Robert, M. A., Jakober, C. A., Hannigan, M. P., & Kleeman, M. J. (2007). Size distribution of trace organic species emitted from heavy-duty diesel vehicles. Environmental Science and Technology, 41(6), 1962–1969.CrossRefGoogle Scholar
  43. Sehili, A. M., & Lammel, G. (2007). Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmospheric Environment, 41(37), 8301–8315.CrossRefGoogle Scholar
  44. Sims, P., & Grover, P. L. (1974). Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. Advance Cancer Research, 20, 165–275.CrossRefGoogle Scholar
  45. Smith, J. R., Egbe, M. E., & Lyman, W. L. (1999). Bioremediation of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. In D. C. Adriano, J. -M. Bollag, W. T. Frankenberger Jr., & Sims R. C. (Eds.). Bioremediation of Contaminated Soil, (No. 37, pp. 665–713). Madison, WI: American Society of Agronomy.Google Scholar
  46. Suess, M. J. (1976). The environmental load and cycle of polycyclic aromatic hydrocarbons. Science of the Total Environment, 6(3), 239–250.CrossRefGoogle Scholar
  47. Thakker, D. R., Yagi, H., Levin, W., Wood, A. W., Conney, A. H., & Jerina, D. M. (1985). Polycyclic aromatic hydrocarbons: metabolic activation to ultimate carcinogens. In M. W. Anders (Ed.), Bioactivation of Foreign Compounds (pp. 177–242). New York: Academic Press.Google Scholar
  48. Timilsina, G. R., & Dulal, H. B. (2009). A Review of Regulatory Instruments to Control Environmental Externalities from the Transport Sector. The World Bank. WPS4867.Google Scholar
  49. Tsibulsky, V., Sokolovsky, V., & Dutchak, S. (2001). MSC-E contribution to the HM and POP emission inventories. Technical Note 7/2001. Retrieved from
  50. United States Environmental Protection Agency (USEPA). (1998). Locating and Estimating Air Emission From Sources of Polycyclic Organic Matter. EPA-454/R-98-014. Retrieved from
  51. United States Environmental Protection Agency (USEPA). (1999). The History of Reducing Tailpipe Emissions. EPA420-F-99-017.Google Scholar
  52. United States Environmental Protection Agency (USEPA). (2011). Clearinghouse for Inventories & Emissions factors. Retrieved from
  53. van der Gon, H. D., van het Bolscher, M., Visschedijk, A., & Zandveld, P. (2007). Emissions of persistent organic pollutants and eight candidate POPs from UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmospheric Environment, 41(40), 9245–9261.CrossRefGoogle Scholar
  54. von Volkman, R. (1875). Beiträge zur Chirurgie [in German]. Leipzig, Germany.Google Scholar
  55. Wang, R., Tao, S., Wang, B., Yang, Y., Lang, C., Zhang, Y. X., et al. (2010). Sources and pathways of polycyclic aromatic hydrocarbons transported to Alert, the Canadian High Arctic. Environmental Science and Technology, 44, 1017–1022.CrossRefGoogle Scholar
  56. Wenborn, M., Coleman, P., Passant, N., Lymberidi. E., Sully, J., Weir, R. (1999). Speciated PAH inventory for the UK. Department of the Environment TatR.Google Scholar
  57. Wingfors, H., Sjodin, A., Haglund, P., & Brorstrom-Lunden, E. (2001). Characterisation and determination of profiles of polycyclic aromatic hydrocarbons in a traffic tunnel in Gothenburg, Sweden. Atmospheric Environment, 35(36), 6361–6369.CrossRefGoogle Scholar
  58. World Health organization (WHO). (2000). Air Quality Guidelines for Europe (2nd ed.). WHO Regional Publications, European Series No. 91. World Health Organization: Copenhagen.Google Scholar
  59. World Health organization (WHO). (2002). World Health Report 2002: Reducing Risks, Promoting Life. Retrieved from
  60. Xu, S. S., Liu, W. X., & Tao, S. (2006). Emission of polycyclic aromatic hydrocarbons in China. Environmental Science and Technology, 40(3), 702–708.CrossRefGoogle Scholar
  61. Zhang, Y. X., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819.CrossRefGoogle Scholar
  62. Zhang, Y. X., Tao, S., Cao, J., & Coveney, R. M. (2007). Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science and Technology, 41(3), 683–687.CrossRefGoogle Scholar
  63. Zhang, Y. X., Tao, S., Shen, H. Z., & Ma, J. M. (2009). Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21063–21067.CrossRefGoogle Scholar
  64. Zhang, Y., Tao, S., Ma, J., & Simonich, S. (2011). Transpacific transport of benzo[a]pyrene emitted from Asia. Atmospheric Chemistry and Physics, 11(23), 11993–12006.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratory for Earth Surface Processes, College of Urban and Environmental SciencesPeking UniversityBeijingChina

Personalised recommendations