Skip to main content

FMISO as a Biomarker for Clinical Radiation Oncology

  • Chapter
  • First Online:
Molecular Radio-Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 198))

Abstract

Tumour hypoxia is a well-known negative prognostic marker in almost all solid tumours. [18F]Fluoromisonidazole (FMISO)-positron emission tomography (PET) is a non-invasive method to detect tumour hypoxia. Compared to other methods of hypoxia assessment it possesses some considerable advantages: It is non-invasive, it delivers spatial information on the hypoxia distribution within the entire tumour volume, and it can be repeated during the course of radio(chemo)therapy. This chapter briefly describes different methods of hypoxia evaluation and focuses on hypoxia PET imaging, with the most commonly used tracer being FMISO. The preclinical rationale and clinical studies to use FMISO-PET for patient stratification in radiation therapy are discussed as well as possible agents or radiation-dose modifications to overcome hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bittner M-I, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA et al (2013) Exploratory geographical analysis of hypoxic subvolumes using (18)F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol 108(3):511–516

    Article  PubMed  Google Scholar 

  • Bol A, Labar D, Cao-Pham TT, Jordan B, Grégoire V et al (2015) Predictive value of (18)F-FAZA PET imaging for guiding the association of radiotherapy with nimorazole: a preclinical study. Radiother Oncol 114(2):189–194

    Article  PubMed  Google Scholar 

  • Bollineni VR, Koole MJB, Pruim J, Brouwer CL, Wiegman EM, Groen HJM et al (2014) Dynamics of tumor hypoxia assessed by 18F-FAZA PET/CT in head and neck and lung cancer patients during chemoradiation: possible implications for radiotherapy treatment planning strategies. Radiother Oncol 113(2):198–203

    Article  PubMed  Google Scholar 

  • Borad MJ, Reddy SG, Bahary N, Uronis HE, Sigal D, Cohn AL et al (2014) Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol

    Google Scholar 

  • Buijsen J, van Stiphout RG, Menheere PPCA, Lammering G, Lambin P (2014) Blood biomarkers are helpful in the prediction of response to chemoradiation in rectal cancer: a prospective, hypothesis driven study on patients with locally advanced rectal cancer. Radiother Oncol 111(2):237–242

    Article  PubMed  Google Scholar 

  • Busk M, Horsman MR, Jakobsen S, Keiding S, van der Kogel AJ, Bussink J et al (2008) Imaging hypoxia in xenografted and murine tumors with 18F-fluoroazomycin arabinoside: a comparative study involving microPET, autoradiography, PO2-polarography, and fluorescence microscopy. Int J Radiat Oncol Biol Phys 70(4):1202–1212

    Article  CAS  PubMed  Google Scholar 

  • Busk M, Horsman MR, Jakobsen S, Hansen KV, Bussink J, van der Kogel A et al (2009) Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast? Radiother Oncol 92(3):429–436

    Article  CAS  PubMed  Google Scholar 

  • Busk M, Mortensen LS, Nordsmark M, Overgaard J, Jakobsen S, Hansen KV et al (2013) PET hypoxia imaging with FAZA: reproducibility at baseline and during fractionated radiotherapy in tumour-bearing mice. Eur J Nucl Med Mol Imaging 40(2):186–197

    Article  CAS  PubMed  Google Scholar 

  • Bussink J, Kaanders JHAM, van der Kogel AJ (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67(1):3–15

    Article  PubMed  Google Scholar 

  • Carlin S, Zhang H, Reese M, Ramos NN, Chen Q, Ricketts S-A (2014) A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers. J Nucl Med 55(3):515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Wen B, Kazanzides P, Zanzonico P, Finn RD, Fichtinger G et al (2009) A robotic system for 18F-FMISO PET-guided intratumoral pO2 measurements. Med Phys 36(11):5301–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman JD (1979) Hypoxic sensitizers–implications for radiation therapy. N Engl J Med 301(26):1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Chapman JD, Franko AJ, Sharplin J (1981) A marker for hypoxic cells in tumours with potential clinical applicability. Br J Cancer 43(4):546–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitneni SK, Palmer GM, Zalutsky MR, Dewhirst MW (2011) Molecular imaging of hypoxia. J Nucl Med 52(2):165–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, Nuyts S (2009) Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med 50(7):1020–1027

    Article  PubMed  Google Scholar 

  • Dubois LJ, Lieuwes NG, Janssen MHM, Peeters WJM, Windhorst AD, Walsh JC et al (2011) Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci USA 108(35):14620–14625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eustace A, Irlam JJ, Taylor J, Denley H, Agrawal S, Choudhury A et al (2013) Necrosis predicts benefit from hypoxia-modifying therapy in patients with high risk bladder cancer enrolled in a phase III randomised trial. Radiother Oncol 108(1):40–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrecht BM, Chapman JD (1983) The labelling of EMT-6 tumours in BALB/C mice with 14C-misonidazole. Br J Radiol 56(670):745–753

    Article  CAS  PubMed  Google Scholar 

  • Goethals L, Debucquoy A, Perneel C, Geboes K, Ectors N, De Schutter H et al (2006) Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Oncol Biol Phys 65(1):246–254

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson K, Phillips M, Smith W, Peterson L, Krohn K, Rajendran J (2011) Hypoxia imaging with [F-18] FMISO-PET in head and neck cancer: potential for guiding intensity modulated radiation therapy in overcoming hypoxia-induced treatment resistance. Radiother Oncol 101(3):369–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515

    CAS  PubMed  Google Scholar 

  • Hoogsteen IJ, Lok J, Marres HAM, Takes RP, Rijken PFJW, van der Kogel AJ et al (2009) Hypoxia in larynx carcinomas assessed by pimonidazole binding and the value of CA-IX and vascularity as surrogate markers of hypoxia. Eur J Cancer 45(16):2906–2914

    Article  CAS  PubMed  Google Scholar 

  • Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9(12):674–687

    Article  CAS  PubMed  Google Scholar 

  • Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, van den Ende P et al (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 30(15):1777–1783

    Article  CAS  PubMed  Google Scholar 

  • Jordan BF, Sonveaux P (2012) Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front Pharmacol 3:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Q-T, Sutphin PD, Raychaudhuri S, Yu SCT, Terris DJ, Lin HS et al (2003) Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9(1):59–67

    CAS  PubMed  Google Scholar 

  • Le Q-T, Chen E, Salim A, Cao H, Kong CS, Whyte R et al (2006) An evaluation of umor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12(5):1507–1514

    Article  CAS  PubMed  Google Scholar 

  • Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3):551–560

    Article  CAS  PubMed  Google Scholar 

  • Lukacova S, Khalil AA, Overgaard J, Alsner J, Horsman MR (2005) Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum. Int J Radiat Biol 81(12):937–944

    Article  CAS  PubMed  Google Scholar 

  • Mathias CJ, Welch MJ, Kilbourn MR, Jerabek PA, Patrick TB, Raichle ME et al (1987) Radiolabeled hypoxic cell sensitizers: tracers for assessment of ischemia. Life Sci 41(2):199–206

    Article  CAS  PubMed  Google Scholar 

  • McCall KC, Humm JL, Bartlett R, Reese M, Carlin S (2012) Copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) pharmacokinetics in FaDu xenograft tumors and correlation with microscopic markers of hypoxia. Int J Radiat Oncol Biol Phys 84(3):e393–e399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen LS, Johansen J, Kallehauge J, Primdahl H, Busk M, Lassen P et al (2012) FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 105(1):14–20

    Article  PubMed  Google Scholar 

  • Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K et al (2012) Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72(16):4165–4177

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue JA, Zanzonico P, Pugachev A, Wen B, Smith-Jones P, Cai S et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, PO2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61(5):1493–1502

    Article  PubMed  Google Scholar 

  • Ogawa K, Chiba I, Morioka T, Shimoji H, Tamaki W, Takamatsu R et al (2011) Clinical significance of HIF-1alpha expression in patients with esophageal cancer treated with concurrent chemoradiotherapy. Anticancer Res 31(6):2351–2359

    CAS  PubMed  Google Scholar 

  • Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K et al (2013) High reproducibility of tumor hypoxia evaluated by 18F-fluoromisonidazole PET for head and neck cancer. J Nucl Med 54(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Ostheimer C, Bache M, Güttler A, Reese T, Vordermark D (2014a) Prognostic information of serial plasma osteopontin measurement in radiotherapy of non-small-cell lung cancer. BMC Cancer 14:858

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostheimer C, Bache M, Güttler A, Kotzsch M, Vordermark D (2014b) A pilot study on potential plasma hypoxia markers in the radiotherapy of non-small cell lung cancer. Osteopontin, carbonic anhydrase IX and vascular endothelial growth factor. Strahlenther Onkol 190(3):276–282

    Article  CAS  PubMed  Google Scholar 

  • Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25(26):4066–4074

    Article  PubMed  Google Scholar 

  • Overgaard J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck—a systematic review and meta-analysis. Radiother Oncol 100(1):22–32

    Article  PubMed  Google Scholar 

  • Peeters SGJA, Zegers CML, Lieuwes NG, van Elmpt W, Eriksson J, van Dongen GAMS et al (2015a) A comparative study of the hypoxia PET tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys 91(2):351–359

    Article  CAS  PubMed  Google Scholar 

  • Peeters SGJA, Zegers CML, Biemans R, Lieuwes NG, van Stiphout RGPM, Yaromina A et al (2015b) TH-302 in combination with radiotherapy enhances the therapeutic outcome and is associated with pretreatment [18F]HX4 hypoxia PET imaging. Clin Cancer Res

    Google Scholar 

  • Piert M, Machulla H-J, Picchio M, Reischl G, Ziegler S, Kumar P et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46(1):106–113

    PubMed  Google Scholar 

  • Rajendran JG, Krohn KA (2015) F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 45(2):151–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D et al (2007) Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA–first small animal PET results. J Pharm Pharm Sci 10(2):203–211

    CAS  PubMed  Google Scholar 

  • Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24(13):2098–2104

    Article  PubMed  Google Scholar 

  • Rischin D, Peters LJ, O’Sullivan B, Giralt J, Fisher R, Yuen K et al (2010) Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol 28(18):2989–2995

    Article  CAS  PubMed  Google Scholar 

  • Schütze C, Bergmann R, Brüchner K, Mosch B, Yaromina A, Zips D et al (2014) Effect of [(18)F]FMISO stratified dose-escalation on local control in FaDu hSCC in nude mice. Radiother Oncol 111(1):81–87

    Article  PubMed  Google Scholar 

  • Servagi-Vernat S, Differding S, Hanin F-X, Labar D, Bol A, Lee JA et al (2014) A prospective clinical study of 18F-FAZA PET-CT hypoxia imaging in head and neck squamous cell carcinoma before and during radiation therapy. Eur J Nucl Med Mol Imaging 41(8):1544–1552

    Article  CAS  PubMed  Google Scholar 

  • Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1):291–300

    Article  PubMed  Google Scholar 

  • Thorwarth D, Monnich D, Wack L et al (2014) Validation of a hypoxia TCP model and dose painting in HNC: Planned interim analysis of a phase II trial. Radiother Oncol 111(Suppl 1):134

    Google Scholar 

  • Toustrup K, Sørensen BS, Nordsmark M, Busk M, Wiuf C, Alsner J et al (2011) Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res 71(17):5923–5931

    Article  CAS  PubMed  Google Scholar 

  • Troost EGC, Bussink J, Kaanders JHAM, van Eerd J, Peters JPW, Rijken PFJW et al (2005) Comparison of different methods of CAIX quantification in relation to hypoxia in three human head and neck tumor lines. Radiother Oncol 76(2):194–199

    Article  CAS  PubMed  Google Scholar 

  • Troost EGC, Laverman P, Kaanders JHAM, Philippens M, Lok J, Oyen WJG et al (2006) Imaging hypoxia after oxygenation-modification: comparing [18F]FMISO autoradiography with pimonidazole immunohistochemistry in human xenograft tumors. Radiother Oncol 80(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Troost EGC, Laverman P, Philippens MEP, Lok J, van der Kogel AJ, Oyen WJG et al (2008) Correlation of [18F]FMISO autoradiography and pimonidazole [corrected] immunohistochemistry in human head and neck carcinoma xenografts. Eur J Nucl Med Mol Imaging 35(10):1803–1811

    Article  CAS  PubMed  Google Scholar 

  • Van Baardwijk A, Dooms C, van Suylen RJ, Verbeken E, Hochstenbag M, Dehing-Oberije C et al (2007) The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. Eur J Cancer 43(9):1392–1398

    Article  PubMed  Google Scholar 

  • Welz S, Pfannenberg C, Reimold M et al (2014) Hypoxia dose-escalation with chemo-radiation in head and neck cancer: planned interim analysis of a randomized study. Radiother Oncol 111(Suppl 1):155–156

    Google Scholar 

  • Yaromina A, Zips D, Thames HD, Eicheler W, Krause M, Rosner A et al (2006) Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: the need for a multivariate approach in biomarker studies. Radiother Oncol 81(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Schroeder T, Bowsher JE, Hedlund LW, Wong T, Dewhirst MW (2006) Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 47(6):989–998

    CAS  PubMed  Google Scholar 

  • Zegers CML, van Elmpt W, Wierts R, Reymen B, Sharifi H, Öllers MC et al (2013) Hypoxia imaging with [18F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 109(1):58–64

    Article  PubMed  Google Scholar 

  • Zhu Y, Denhardt DT, Cao H, Sutphin PD, Koong AC, Giaccia AJ et al (2005) Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24(43):6555–6563

    CAS  PubMed  Google Scholar 

  • Zips D, Zöphel K, Abolmaali N, Perrin R, Abramyuk A, Haase R et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol 105(1):21–28

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Zschaeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zschaeck, S., Steinbach, J., Troost, E.G. (2016). FMISO as a Biomarker for Clinical Radiation Oncology. In: Baumann, M., Krause, M., Cordes, N. (eds) Molecular Radio-Oncology. Recent Results in Cancer Research, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49651-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49651-0_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49649-7

  • Online ISBN: 978-3-662-49651-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics