Skip to main content

Superionic Phase Transition Optimizing Thermoelectric Performance in Silver Chalcogenide Nanocrystals

  • Chapter
  • First Online:
  • 637 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

On the basis of the conversion of heat into electricity, thermoelectric generators are today well recognized as viable renewable energy sources [1–4]. The heat can come from the combustion of fossil fuels, from sunlight, or as a byproduct of various processes (e.g., chemical reactions, nuclear decay, and so on).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., et al. (2008). Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554–557.

    Article  Google Scholar 

  2. Johnsen, S., He, J. Q., Androulakis, J., Dravid, V. P., Todorov, I., Chung, D. Y., & Kanatzidis, M. G. (2011). Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society, 133, 3460–3470.

    Article  Google Scholar 

  3. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., & Heath, J. R. (2010). Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotechnology, 5, 718–721.

    Article  Google Scholar 

  4. Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature Materials, 7, 105–114.

    Article  Google Scholar 

  5. Kanatzidis, M. G. (2001). In M. T. Terry (Ed.), Semiconductors and Semimetals (Vol. 69, p. 5). Amsterdam: Elsevier.

    Google Scholar 

  6. Rao, C. N. R. (1984). Phase transitions and the chemistry of solids. Accounts of Chemical Research, 17, 83–89.

    Article  Google Scholar 

  7. Imada, M., Fujimori, A., & Tokura, Y. (1998). Metal-insulator transitions. Reviews of Modern Physics, 70, 1039–1263.

    Article  Google Scholar 

  8. Wu, C. Z., Feng, F., Feng, J., Dai, J., Peng, L. L., Zhao, J. Y., et al. (2011). Hydrogen-incorporation stabilization of metallic VO2 (R) phase to room temperature, displaying promising low-temperature thermoelectric effect. Journal of the American Chemical Society, 133, 13798–13801.

    Article  Google Scholar 

  9. Junod, P. (1959). Relations entre la structure cristalline et les propriétés électroniques des combinaisons Ag-2S, Ag-2Se, Cu-2Se. Helvetica Physica Acta, 32, 567–600.

    Google Scholar 

  10. Kobayashi, M. (1990). Review on structural and dynamical properties of silver chalcogenides. Solid State Ionics, 39, 121–149.

    Article  Google Scholar 

  11. Santhosh Kumar, M. C., & Pradeep, B. (2002). Structural, electrical and optical properties of silver selenide thin films. Semiconductor Science and Technology, 17, 261–265.

    Article  Google Scholar 

  12. Ge, J. P., Xu, S., Liu, L. P., & Li, Y. D. (2006). A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chemistry: A European Journal, 12, 3672–3677.

    Article  Google Scholar 

  13. Boolchand, P., & Bresser, W. J. (2001). Mobile silver ions and glass formation in solid electrolytes. Nature, 410, 1070–1073.

    Article  Google Scholar 

  14. Utsugi, Y. (1997). Direct observation of atom movement in photoexcited ionic-electronic conductors. Physical Review B, 55, 10800–10804.

    Article  Google Scholar 

  15. Hamilton, M. A., Barnes, A. C., Howells, W. S., & Fischer, H. E. (2001). Ag+ dynamics in the superionic and liquid phases of Ag2Se and Ag2Te by coherent quasi-elastic neutron scattering. Journal of Physics Condensed Matter, 13, 2425–2436.

    Article  Google Scholar 

  16. Oliveria, M., McMullan, R. K., & Wuensch, B. J. (1988). Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2− xS, α-Cu2−xSe, and α-Ag2Se. Solid State Ionics, 28–30, 1332–1337.

    Article  Google Scholar 

  17. Cook, B. A., Kramer, M. J., Harringa, J. L., Han, M., Chung, D. Y., & Kanatzidis, M. G. (2009). Analysis of nanostructuring in high figure-of-merit Ag1–xPbmSbTe2+m thermoelectric materials. Advanced Functional Materials, 19, 1254–1259.

    Article  Google Scholar 

  18. Zhao, Y. X., Dyck, J. S., Hernandez, B. M., & Burda, C. (2010). Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. Journal of the American Chemical Society, 132, 4982–4983.

    Article  Google Scholar 

  19. Son, J. S., Park, K., Han, M. K., Kang, C. Y., Park, S. G., Kim, J. H., et al. (2011). Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angewandte Chemie International Edition, 123, 1399–1402.

    Article  Google Scholar 

  20. Ioffe, A. (1957). Semiconductors thermoelements and thermoelectric cooling. London: Infosearch Ltd.

    Google Scholar 

  21. Chung, D. Y., Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., Kanatzidis, M. G. (2000). CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science, 287, 1024–1027.

    Google Scholar 

  22. Wölfing, B., Kloc, C., Teubner, J., & Bucher, E. (2001). High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. Physical Review Letters, 86, 4350–4353.

    Article  Google Scholar 

  23. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., et al. (2004). Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science, 303, 818–821.

    Article  Google Scholar 

  24. Wiegers, G. A. (1971). Crystal-structure of low-temperature form of silver selenide. American Mineralogist, 56, 1882.

    Google Scholar 

  25. Billetter, H., & Ruschewitz, U. Z. (2008). Structural phase transitions in Ag2Se (Naumannite). Zeitschrift für Anorganische und Allgemeine Chemie, 634, 241–246.

    Article  Google Scholar 

  26. Bux, S. K., Fleurial, J. P., & Kaner, R. B. (2010). Nanostructured materials for thermoelectric applications. Chemical Communications, 46, 8311–8324.

    Article  Google Scholar 

  27. Kleinke, H. (2010). New bulk materials for thermoelectric power generation: Clathrates and complex antimonides. Chemistry of Materials, 22, 604–611.

    Article  Google Scholar 

  28. Shakouri, A. (2011). Recent developments in semiconductor thermoelectric physics and materials. Annual Review of Materials Research, 41, 399–431.

    Article  Google Scholar 

  29. Tritt, T. M. (2011). Thermoelectric phenomena, materials, and applications. Annual Review of Materials Research, 41, 433–448.

    Article  Google Scholar 

  30. Urban, J. J., Talapin, D. V., Shevchenko, E. V., Kagan, C. R., & Murray, C. B. (2007). Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nature Materials, 6, 115–121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xiao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiao, C. (2016). Superionic Phase Transition Optimizing Thermoelectric Performance in Silver Chalcogenide Nanocrystals. In: Synthesis and Optimization of Chalcogenides Quantum Dots Thermoelectric Materials. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49617-6_2

Download citation

Publish with us

Policies and ethics