Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 628 Accesses

Abstract

The modernization of world economy, which is built on the basis of extensive utilization of fossil energy, has brought great convenience to people’s lives. However, the consumption of fossil energy, such as oil, coal, and natural gas, has exceeded the medium-term point of the existing reserves, which means that if the consumption increases by 2 % compared to current level, the energy resources, on which modern economy was built, will deplete quickly. In addition, the disposable utilization of fossil energy also causes serious environmental pollution, challenging the sustainable development of human society. Therefore, seeking of new clean and renewable energy materials to deal with the energy and environmental crisis has become a worldwide research hot spot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leong, D., Harry, M., Reeson, K. J., & Homewood, K. P. (1997). A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature, 387, 686–688.

    Article  Google Scholar 

  2. DiSalvo, F. J. (1999). Thermoelectric cooling and power generation. Science, 285, 703–706.

    Article  Google Scholar 

  3. Sales, B. C. (2002). Smaller is cooler. Science, 295, 1248–1249.

    Article  Google Scholar 

  4. Service, R. F. (2006). American Physical Society meeting. Semiconductor advance may help reclaim energy from ‘lost’ heat. Science, 311, 1860.

    Article  Google Scholar 

  5. Seebeck, T. J. (1822). Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265, 1822–1823.

    Google Scholar 

  6. Peltier, J. C. (1834). Nouvelle experiences sur la caloricite des courans electrique. Annales de Chimie et de Physique, LV1:371.

    Google Scholar 

  7. Altenkirsch, E. (1909). Über den nutzeffekt der thermosäule. Physikalishce Zeitschrift, 10, 560–580.

    Google Scholar 

  8. Mahan, G., Sales, B., & Sharp, J. (1997). Thermoelectric materials: New approaches to an old problem. Physics Today, 4, 42–47.

    Article  Google Scholar 

  9. Bell, L. E. (2008). Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457–1461.

    Article  Google Scholar 

  10. Wood, C. (1988). Materials for thermoelectric energy conversion. Reports on Progress in Physics, 51, 459–539.

    Article  Google Scholar 

  11. Goldsmid, H. J. (1964). Thermoelectric refrigeration. New York: Plenum Press.

    Book  Google Scholar 

  12. Snyder, G. J., & Toberer, E. S. (2008). Complex thermoelectric materials. Nature materials, 7, 105–114.

    Article  Google Scholar 

  13. Shakouri, A. (2011). Recent developments in semiconductor thermoelectric physics and materials. Annual Review of Materials Research, 41, 399–431.

    Article  Google Scholar 

  14. Mahan, G. D., & Bartkowiak, M. (1999). Wiedemann-Franz law at boundaries. Applied Physics Letters, 74, 953–954.

    Article  Google Scholar 

  15. Hicks, L. D., Harman, T. C., & Dresselhaus, M. S. (1993). Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Applied Physics Letters, 63, 3230–3232.

    Article  Google Scholar 

  16. Snyder, G. J., Christensen, M., Nishibori, E., Caillat, T., & Iversen, B. B. (2004). Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nature Materials, 3, 458–463.

    Article  Google Scholar 

  17. Nylen, J., Andersson, M., Lidin, S., & Haussermann, U. (2004). The structure of α-Zn4Sb3: Ordering of the phonon-glass thermoelectric material β-Zn4Sb3. Journal of the American Chemical Society, 126, 16306–16307.

    Article  Google Scholar 

  18. Bhattacharya, S., Hermann, R. P., Keppens, V., Tritt, T. M., & Snyder, G. J. (2006). Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn4Sb3. Physical Review B, 74, 134108.

    Article  Google Scholar 

  19. Nylen, J., Lidin, S., Andersson, M., Iversen, B. B., Liu, H. X., Newman, N., & Haussermann, U. (2007). Low-temperature structural transitions in the phonon-glass thermoelectric material β-Zn4Sb3: ordering of Zn interstitials and defects. Chemistry of Materials, 19, 834–838.

    Article  Google Scholar 

  20. Sun, Y., Christensen, M., Johnsen, S., Nong, N. V., Ma, Y., Sillassen, M., et al. (2012). Low-cost high-performance zinc antimonide thin films for thermoelectric applications. Advanced Materials, 24, 1693–1696.

    Article  Google Scholar 

  21. Brown, S. R., Kauzlarich, S. M., Gascoin, F., & Snyder, G. J. (2006). Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chemistry of Materials, 18, 1873–1877.

    Article  Google Scholar 

  22. Toberer, E. S., Cox, C. A., Brown, S. R., Ikeda, T., May, A. F., Kauzlarich, S. M., & Snyder, G. J. (2008). Traversing the metal-insulator transition in a zintl phase: rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11. Advanced Functional Materials, 18, 2795–2800.

    Article  Google Scholar 

  23. Kastbjerg, S., Uvarov, C. A., Kauzlarich, S. M., Nishibori, E., Spackman, M. A., & Iversen, B. B. (2011). Multi-temperature synchrotron powder x-ray diffraction study and hirshfeld surface analysis of chemical bonding in the thermoelectric zintl phase Yb14MnSb11. Chemistry of Materials, 23, 3723–3730.

    Article  Google Scholar 

  24. Bhattacharya, S., Marinescu, D. C., Morris, J. R., Sergienko, I. A., Sales, B., Mandrus, D., & Keppens, V. (2012). Elastic properties of the Zintl ferromagnet Yb14MnSb11. Physical Review B, 86, 024402.

    Article  Google Scholar 

  25. Flage-Larsen, E., Diplas, S., Prytz, O., Toberer, E. S., & May, A. F. (2010). Valence band study of thermoelectric Zintl-phase SrZn_2Sb_2 and YbZn_2Sb_2: X-ray photoelectron spectroscopy and density functional theory. Physical Review B, 81, 205204.

    Article  Google Scholar 

  26. May, A. F., McGuire, M. A., Ma, J., Delaire, O., Huq, A., & Custelcean, R. (2012). Properties of single crystalline AZn2Sb2 (A = Ca, Eu, Yb). Journal of Applied Physics, 111, 033708.

    Article  Google Scholar 

  27. Brown, S. R., Kauzlarich, S. M., Gascoin, F., & Snyder, G. J. (2007). High-temperature thermoelectric studies of A11Sb10 (A = Yb, Ca). Journal of Solid State Chemistry, 180, 1414–1420.

    Article  Google Scholar 

  28. May, A. F., Flage-Larsen, E., & Snyder, G. J. (2010). Electron and phonon scattering in the high-temperature thermoelectric La3Te4−zMz (M = Sb, Bi). Physical Review B, 81, 125205.

    Article  Google Scholar 

  29. Morelli, D. T., Jovovic, V., & Heremans, J. P. (2008). Intrinsically minimal thermal conductivity in cubic I–V–VI2 semiconductors. Physical Review Letters, 101, 035901.

    Article  Google Scholar 

  30. Du, B. L., Li, H., Xu, J. J., Tang, X. F., & Uher, C. (2010). Enhanced figure-of-merit in Se-doped p-type AgSbTe2 thermoelectric compound. Chemistry of Materials, 22, 5521–5527.

    Article  Google Scholar 

  31. Nielsen, M. D., Ozolins, V., & Heremans, J. P. (2013). Lone pair electrons minimize lattice thermal conductivity. Energy & Environmental Science, 6, 570–578.

    Article  Google Scholar 

  32. Liu, H. L., Shi, X., Xu, F. F., Zhang, L. L., Zhang, W. Q., Chen, L. D., et al. (2012). Copper ion liquid-like thermoelectrics. Nature Materials, 11, 422–425.

    Article  Google Scholar 

  33. Liu, M. L., Chen, I. W., Huang, F. Q., & Chen, L. D. (2009). Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Advanced Materials, 21, 3808–3812.

    Article  Google Scholar 

  34. Fan, F. J., Yu, B., Wang, Y. X., Zhu, Y. L., Liu, X. J., Yu, S. H., & Ren, Z. F. (2011). Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. Journal of the American Chemical Society, 133, 15910–15913.

    Article  Google Scholar 

  35. Ibáñez, M., Cadavid, D., Zamani, R., García-Castelló, N., Izquierdo-Roca, V., Li, W. H., et al. (2012). Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: the case of stannite Cu2CdSnSe4. Chemistry of Materials, 24, 562–570.

    Article  Google Scholar 

  36. Ibáñez, M., Zamani, R., LaLonde, A., Cadavid, D., Li, W. H., Shavel, A., et al. (2012). Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. Journal of the American Chemical Society, 134, 4060–4063.

    Article  Google Scholar 

  37. Zeier, W. G., LaLonde, A., Gibbs, Z. M., Heinrich, C. P., Panthofer, M., Snyder, G. J., & Tremel, W. (2012). Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu2+xZn1–xGeSe4. Journal of the American Chemical Society, 134, 7147–7154.

    Article  Google Scholar 

  38. Fan, F. J., Wang, Y. X., Liu, X. J., Wu, L., & Yu, S. H. (2012). Large-scale colloidal synthesis of non-Stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Advanced Materials, 24, 6158–6163.

    Article  Google Scholar 

  39. Zeier, W. G., Pei, Y. Z., Pomrehn, G. S., Day, T., Heinz, N., Heinrich, C. P., et al. (2013). phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn1–xFexGeSe4. Journal of the American Chemical Society, 135, 726–732.

    Article  Google Scholar 

  40. Klemens, P. G. (1955). The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 68, 1113–1128.

    Article  Google Scholar 

  41. Carruthers, P. (1961). Theory of thermal conductivity of solids at low temperatures. Reviews of Modern Physics, 33, 92–138.

    Article  Google Scholar 

  42. Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., & Beers, D. S. (1964). Thermal and electrical properties of heavily doped Ge-Si alloys up to 1300K. Journal of Applied Physics, 35, 2899.

    Article  Google Scholar 

  43. Slack, G. A., & Hussain, M. A. (1991). The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 70, 2694.

    Article  Google Scholar 

  44. Cahill, D. G., Watanabe, F., Rockett, A., & Vining, C. B. (2005). Thermal conductivity of epitaxial layers of dilute SiGe alloys. Phys. Rev. B, 71, 235202.

    Article  Google Scholar 

  45. Yu, C., Scullin, M. L., Huijben, M., Ramesh, R., & Majumdar, A. (2008). Thermal conductivity reduction in oxygen-deficient strontium titanates. Applied Physics Letters, 92, 191911.

    Article  Google Scholar 

  46. Vineis, C. J., Shakouri, A., Majumdar, A., & Kanatzidis, M. G. (2010). Nanostructured thermoelectrics: big efficiency gains from small features. Advanced Materials, 22, 3970–3980.

    Article  Google Scholar 

  47. Rowe, D. M., Shukla, V. S., & Savvides, N. (1981). Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys. Nature, 290, 765–766.

    Article  Google Scholar 

  48. Vining, C. B., Laskow, W., Hanson, J. O., Beck, R. R. V. D., & Gorsuch, P. D. (1991). Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. Journal of Applied Physics, 69, 4333.

    Article  Google Scholar 

  49. Chen, G. (1998). Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Physical Review B, 57, 14958.

    Article  Google Scholar 

  50. Mi, J. L., Zhu, T. J., Zhao, X. B., & Ma, J. (2007). Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb {sub 3}. Journal of Applied Physics, 101, 054314.

    Article  Google Scholar 

  51. Bux, S. K., Blair, R. G., Gogna, P. K., Lee, H., Chen, G., Dresselhaus, M. S., et al. (2009). Nanostructured bulk silicon as an effective thermoelectric material. Advanced Functional Materials, 19, 2445–2452.

    Article  Google Scholar 

  52. Biswas, K., He, J. Q., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., et al. (2012). High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414–418.

    Article  Google Scholar 

  53. Mott, N. F., & Jones, H. (1958). The theory of the properties of metals and alloys. New York: Dover Publications.

    Google Scholar 

  54. Bilc, D., Mahanti, S. D., Quarez, E., Hsu, K.-F., Pcionek, R., & Kanatzidis, M. G. (2004). Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: The role of Ag-Sb microstructures. Physical Review Letters, 93, 146403.

    Article  Google Scholar 

  55. Ahmad, S., Hoang, K., & Mahanti, S. D. (2006). Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Physical Review Letters, 96, 056403.

    Article  Google Scholar 

  56. Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., et al. (2008). Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554–557.

    Article  Google Scholar 

  57. Jaworski, C. M., Tobola, J., Levin, E. M., Schmidt-Rohr, K., & Heremans, J. P. (2009). Antimony as an amphoteric dopant in lead telluride. Physical Review B, 80, 125208.

    Article  Google Scholar 

  58. Jaworski, C. M., Wiendlocha, B., Jovovic, V., & Heremans, J. P. (2011). Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy & Environmental Science, 4, 4155–4162.

    Article  Google Scholar 

  59. Esfarjani, K., Chen, G., & Ren, Z. F. (2012). Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy & Environmental Science, 5, 5246–5251.

    Article  Google Scholar 

  60. Heremans, J. P., Wiendlocha, B., & Chamoire, A. M. (2012). Resonant levels in bulk thermoelectric semiconductors. Energy & Environmental Science, 5, 5510–5530.

    Article  Google Scholar 

  61. Shakouri, A., & Bowers, J. E. (1997). Heterostructure integrated thermionic coolers. Applied Physics Letters, 71, 1234.

    Article  Google Scholar 

  62. Kishimoto, K., Tsukamoto, M., & Koyanagi, T. (2002). Temperature dependence of the seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering. Journal of Applied Physics, 92, 5331.

    Article  Google Scholar 

  63. Vashaee, D., & Shakouri, A. (2004). Improved thermoelectric power factor in metal-based superlattices. Physical Review Letters, 92, 106103.

    Article  Google Scholar 

  64. Heremans, J. P., Thrush, C. M., & Morelli, D. T. (2004). Thermopower enhancement in lead telluride nanostructures. Physical Review B, 70, 115334.

    Article  Google Scholar 

  65. Heremans, J. P., Thrush, C. M., & Morelli, D. T. (2005). Thermopower enhancement in PbTe with Pb precipitates. Journal of Applied Physics, 98, 063703.

    Article  Google Scholar 

  66. Zide, J. M. O., Vashaee, D., Bian, Z. X., Zeng, G., Bowers, J. E., Shakouri, A., & Gossard, A. C. (2006). Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Physical Review B, 74, 205335.

    Article  Google Scholar 

  67. Martin, J., Wang, L., Chen, L., & Nolas, G. S. (2009). Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Physical Review B, 79, 115311.

    Article  Google Scholar 

  68. Herring, C., Geballe, T. H., & Kunzler, J. E. (1958). Phonon-drag thermomagnetic effects in n-type germanium. I. general survey. Physical Review, 111, 36–57.

    Article  Google Scholar 

  69. Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., et al. (2008). Enhanced thermoelectric performance of rough silicon nanowires. Nature, 451, 163–167.

    Article  Google Scholar 

  70. Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W. A., & Heath, J. R. (2008). Silicon nanowires as efficient thermoelectric materials. Nature, 451, 168–171.

    Article  Google Scholar 

  71. Alivisatos, A. P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933–937.

    Article  Google Scholar 

  72. Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., et al. (2007). New directions for low-dimensional thermoelectric materials. Advanced Materials, 19, 1043–1053.

    Article  Google Scholar 

  73. Brus, L. E. (1986). Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry, 90, 2555–2560.

    Article  Google Scholar 

  74. Henglein, A. (1988). Mechanism of reactions on colloidal microelectrodes and size quantization effects. Topics in Current Chemistry, 143, 113–180.

    Article  Google Scholar 

  75. Steigerwald, M. L., & Brus, L. E. (1989). Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annual Review of Materials Science, 19, 471–495.

    Article  Google Scholar 

  76. Steigerwald, M. L., & Brus, L. E. (1990). Semiconductor crystallites: A class of large molecules. Accounts of Chemical Research, 23, 183–188.

    Article  Google Scholar 

  77. Halperin, W. P. (1986). Quantum size effects in metal particles. Reviews of Modern Physics, 58, 532–606.

    Article  Google Scholar 

  78. Ball, P., & Garwin, L. (1992). Science at the atomic scale. Nature, 355, 761–766.

    Article  Google Scholar 

  79. Goldstein, A. N., Echer, C. M., & Alivisatos, A. P. (1992). Science, 256, 1425.

    Article  Google Scholar 

  80. Harman, T. C., Taylor, P. J., Walsh, M. P., & LaForge, B. E. (2002). Quantum dot superlattice thermoelectric materials and devices. Science, 297, 2229–2232.

    Article  Google Scholar 

  81. Lin, Y. M., & Dresselhaus, M. S. (2003). Thermoelectric properties of superlattice nanowires. Physical review B, 68, 075304.

    Article  Google Scholar 

  82. Ikeda, T., Collins, L. A., Ravi, V. A., Gascoin, F. S., Haile, S. M., & Snyder, G. J. (2007). Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chemistry of Materials, 19, 763–767.

    Article  Google Scholar 

  83. Wang, S., & Mingo, N. (2009). Tailoring interface roughness and superlattice period length in electron-filtering thermoelectric materials. Physical Review B, 79, 115316.

    Article  Google Scholar 

  84. Dirmyer, M. R., Martin, J., Nolas, G. S., Ayusman, S., & Badding, J. V. (2009). Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small, 5, 933–937.

    Article  Google Scholar 

  85. Zhao, Y., Dyck, J. S., Hernandez, B. M., & Burda, C. (2010). Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. Journal of the American Chemical Society, 132, 4982–4983.

    Article  Google Scholar 

  86. Chen, J., Zhang, G., & Li, B. W. (2010). Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Letters, 10, 3978–3983.

    Article  Google Scholar 

  87. Scheele, M., Oeschler, N., Veremchuk, I., Reinsberg, K.-G., Kreuziger, A.-M., Kornowski, A., et al. (2010). ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano, 4, 4283–4291.

    Article  Google Scholar 

  88. Poudeu, P. F. P., Güeguen, A., Wu, C.-I., Hogan, T., & Kanatzidis, M. G. (2010). High figure of merit in nanostructured n-Type KPbmSbTem+2 thermoelectric materials. Chemistry of Materials, 22, 1046–1053.

    Article  Google Scholar 

  89. Zhang, Y. C., Wang, H., Krøaemer, S., Shi, Y. F., Zhang, F., Snedaker, M., et al. (2011). Surfactant-free synthesis of Bi2Te3-Te micro−nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 5, 3158–3165.

    Article  Google Scholar 

  90. Nika, D. L., Pokatilov, E. P., Balandin, A. A., Fomin, V. M., Rastelli, A., & Schmidt, O. G. (2011). Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Physical Review B, 84, 165415.

    Article  Google Scholar 

  91. Soni, A., Zhao, Y. Y., Yu, L. G., Khor, K. A., Dresselhaus, M. S., & Xiong, Q. H. (2012). Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Letters, 12, 1203–1209.

    Article  Google Scholar 

  92. Soni, A., Shen, Y. Q., Yin, M., Zhao, Y. Y., Yu, L. G., Hu, X., et al. (2012). Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Letters, 12, 4305–4310.

    Article  Google Scholar 

  93. Mehta, R. J., Zhang, Y. L., Karthik, C., Singh, B., Siegel, R. W., Borca-Tasciuc, T., & Ramanath, G. (2012). A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Materials, 11, 233–240.

    Article  Google Scholar 

  94. Park, J., An, K. J., Hwang, Y. S., Park, J. G., Noh, H. J., Kim, J. Y., et al. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3, 891–895.

    Article  Google Scholar 

  95. Wang, X., Zhuang, J., Peng, Q., & Li, Y. D. (2005). A general strategy for nanocrystal synthesis. Nature, 437, 121–124.

    Article  Google Scholar 

  96. Kovalenko, M. V., Spokoyny, B., Lee, J. S., Scheele, M., Weber, A., Perera, S., et al. (2010). Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. Journal of the American Chemical Society, 132, 6686–6695.

    Article  Google Scholar 

  97. Son, J. S., Park, K., Han, M. K., Kang, C., Park, S. G., Kim, J. H., et al. (2011). Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angewandte Chemie International Edition, 123, 1399–1402.

    Article  Google Scholar 

  98. Ibáñez, M., Zamani, R., Li, W. H., Cadavid, D., Gorsse, S., Katcho, N. A., et al. (2012). Crystallographic control at the nanoscale to enhance functionality: polytypic Cu2GeSe3 nanoparticles as thermoelectric materials. Chemistry of Materials, 24, 4615–4622.

    Article  Google Scholar 

  99. Zhang, G. Q., Kirk, B., Jauregui, L. A., Yang, H. R., Xu, X. F., Chen, Y. P., & Wu, Y. (2012). Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties. Nano Letters, 12, 56–60.

    Article  Google Scholar 

  100. Son, J. S., Choi, M. K., Han, M.-K., Park, K., Kim, J.-Y., Lim, S. J., et al. (2012). n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Letters, 12, 640–647.

    Article  Google Scholar 

  101. Ibáñez, M., Zamani, R., Gorsse, S., Fan, J. D., Ortega, S., Cadavid, D., et al. (2013). Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe–PbS thermoelectric properties. ACS Nano, 7, 2573–2588.

    Article  Google Scholar 

  102. Rhyee, J. S., Lee, K. H., Lee, S. M., Cho, E, I. I., Kim, S., Lee, E., et al. (2009). Peierls distortion as a route to high thermoelectric performance in In4Se3-δcrystals. Nature, 459, 965–968.

    Article  Google Scholar 

  103. Rhyee, J. S., Ahn, K., Lee, K. H., Ji, H. S., & Shim, J. H. (2011). Enhancement of the thermoelectric figure-of-merit in a wide temperature range in In4Se3-xCl0.03 bulk crystals. Advanced Materials, 23, 2191–2194.

    Article  Google Scholar 

  104. Zhu, G. H., Lan, Y. C., Wang, H., Joshi, G., Hao, Q., Chen, G., & Ren, Z. F. (2011). Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3−x compounds. Physical Review B, 83, 115201.

    Article  Google Scholar 

  105. Kim, J. H., Rhyee, J. S., & Kwon, Y. S. (2012). Magnon gap formation and charge density wave effect on thermoelectric properties in the SmNiC2 compound. Physical Review B, 86, 235101.

    Article  Google Scholar 

  106. Ahn, K., Cho, E., Rhyee, J. S., Kim, S. I., Hwang, S., Kim, H. S., et al. (2012). Improvement in the thermoelectric performance of the crystals of halogen-substituted In4Se3−xH0.03 (H = F, Cl, Br, I): Effect of halogen-substitution on the thermoelectric properties in In4Se3−x. Journal of Materials Chemistry, 22, 5730–5736.

    Article  Google Scholar 

  107. Lackmann, F. C. (2000). Quasicrystals as potential candidates for thermoelectric materials. Materials Science and Engineering, 294–296, 611–612.

    Article  Google Scholar 

  108. Fisher, I. R., Cheon, K. O., & Panchula, A. F. (1999). Magnetic and transport properties of single-grain R-M g-Z n icosahedral quasicrystals [R = Y, (Y1−xGdx), (Y1−xTbx), Tb, Dy, Ho, and Er]. Physical Review B, 59, 308–321.

    Article  Google Scholar 

  109. Enrigue, M. (2000). May quasicrystals be good thermoelectric materials? Applied Physics Letters, 77, 3045.

    Article  Google Scholar 

  110. Slack, G. A. (1995). CRC handbook of thermoelectric (p. 407). Boca Raton: Chemical Rubber.

    Google Scholar 

  111. Toprak, M. S., Stiewe, C., Platzek, D., Williams, S., Bertini, L., Muller, E. C., et al. (2004). The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Advanced Functional Materials, 14, 1189–1196.

    Article  Google Scholar 

  112. Liu, W. S., Zhang, B. P., Zhao, L. D., & Li, J. F. (2008). Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-Group elements for Sb. Chemistry of Materials, 20, 7526–7531.

    Article  Google Scholar 

  113. Koza, M. M., Johnson, M. R., Viennois, R., Mutka, H., Girard, L., & Ravot, D. (2008). Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nature Materials, 7, 805–810.

    Article  Google Scholar 

  114. Zhao, W. Y., Wei, P., Zhang, Q. J., Dong, C. L., Liu, L. S., & Tang, X. F. (2009). Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. Journal of the American Chemical Society, 131, 3713–3720.

    Article  Google Scholar 

  115. Xi, L. L., Yang, J., Lu, C. F., Mei, Z. G., Zhang, W. Q., & Chen, L. D. (2010). Systematic study of the multiple-element filling in caged skutterudite CoSb3. Chemistry of Materials, 20, 2384–2394.

    Article  Google Scholar 

  116. Shi, X., Yang, J., Salvador, J. R., Chi, M. F., Cho, J. Y., Wang, H., et al. (2011). Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 133, 7837–7846.

    Article  Google Scholar 

  117. Su, X. L., Li, H., Wang, G. Y., Chi, H., Zhou, X. Y., Tang, X. F., et al. (2011). Structure and transport properties of double-doped CoSb2.75Ge0.25–xTex(x = 0.125–0.20) with in situ nanostructure. Chemistry of Materials, 23, 2948–2955.

    Article  Google Scholar 

  118. Schmokel, M. S., Bjerg, L., Overgaard, J., Larsen, F. K., Madsen, G. K. H., Sugimoto, K., et al. (2013). Pushing X-ray electron densities to the limit: Thermoelectric CoSb3. Angewandte Chemie. International Edition, 52, 1503–1506.

    Article  Google Scholar 

  119. Nolas, G. S., Weakley, T. J. R., & Cohn, J. L. (1999). Structural, chemical, and transport properties of a new clathrate compound: Cs8Zn4Sn42. Chemistry of Materials, 11, 2470–2473.

    Article  Google Scholar 

  120. Tse, J. S., Uehara, K., Rousseau, R., Ker, A., Ratcliffe, C. I., White, M. A., & MacKay, G. (2000). Structural principles and amorphouslike thermal conductivity of Na-doped Si clathrates. Physical Review Letters, 85, 114–117.

    Article  Google Scholar 

  121. Dong, J. J., Sankey, O. F., & Myles, C. W. (2001). Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. Physical Review Letters, 86, 2361–2364.

    Article  Google Scholar 

  122. Guloy, A. M., Ramlau, R., Tang, Z. J., Schnelle, W., Baitinger, M., & Grin, Y. (2006). A guest-free germanium clathrate. Nature, 443, 320–323.

    Article  Google Scholar 

  123. Christensen, M., Lock, N., Overgaard, J., & Iversen, B. B. (2006). Crystal structures of thermoelectric n- and p-type Ba8Ga16Ge30 studied by single crystal, multitemperature, neutron diffraction, conventional X-ray diffraction and resonant synchrotron X-ray diffraction. Journal of the American Chemical Society, 128, 15657–15665.

    Article  Google Scholar 

  124. Christensen, M., & Iversen, B. B. (2007). Host structure engineering in thermoelectric clathrates. Chemistry of Materials, 19, 4896–4905.

    Article  Google Scholar 

  125. Christensen, M., Abrahamsen, A. B., Christensen, N. B., Juranyi, F., Andersen, N. H., Lefmann, K., et al. (2008). Avoided crossing of rattler modes in thermoelectric materials. Nature Materials, 7, 811–815.

    Article  Google Scholar 

  126. Liu, Y., Wu, L. M., Li, L. H., Du, S. W., Corbett, J. D., & Chen, L. (2009). The antimony-based type I clathrate compounds Cs8Cd18Sb28 and Cs8Zn18Sb28. Angewandte Chemie. International Edition, 121, 5409–5412.

    Article  Google Scholar 

  127. Kirsanova, M. A., Olenev, A. V., Abakumov, A. M., Bykov, M. A., & Shevelkov, A. V. (2011). Extension of the clathrate family: the type X clathrate Ge79P29S18Te6. Angewandte Chemie International Edition, 50, 2371–2374.

    Article  Google Scholar 

  128. Goldsmid, H. J. (1964). Thermoelectric refrigeration. Plenum.

    Google Scholar 

  129. Ravich, Y. I., Efimova, B. A., & Smirnov, I. A. (1970). Semiconducting lead chalcogenides. New York: Plenum Press.

    Book  Google Scholar 

  130. Sitter, H., Lischka, K., & Heinrich, H. (1977). Structure of the second valence band in PbTe. Phys. Rev. B, 16, 680–687.

    Article  Google Scholar 

  131. Ravich, Y. I. (2003). Lead chalcogenides: Physics and applications, Chap. 1. In D. Khokhlov (Ed.) New York: Taylor & Fransics Group.

    Google Scholar 

  132. Hoang, K. S., Mahanti, D., & Kanatzidis, M. G. (2010). Impurity clustering and impurity-induced bands in PbTe-, SnTe-, and GeTe-based bulk thermoelectrics. Physical Review B, 81, 115106.

    Article  Google Scholar 

  133. Pei, Y. Z., Shi, X., LaLonde, A., Wang, H., Chen, L. D., & Snyder, G. J. (2011). Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66–69.

    Article  Google Scholar 

  134. Liu, W., Tan, X., Yin, K., Liu, H., Tang, X., Shi, J., et al. (2012). Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Physical Review Letters, 108, 166601.

    Article  Google Scholar 

  135. Takeuchi, T., Kondo, T., Takami, T., Takahashi, H., Ikuta, H., Mizutani, U., et al. (2004). Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides. Physical Review B, 69, 125410.

    Article  Google Scholar 

  136. Koshibae, W., & Maekawa, S. (2001). Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. Physical Review Letters, 87, 236603.

    Article  Google Scholar 

  137. Maignan, A., Wang, L. B., Hebert, S., Pelloquin, D., & Raveau, B. (2002). Large thermopower in metallic misfit cobaltites. Chemistry of Materials, 14, 1231–1235.

    Article  Google Scholar 

  138. Wang, Y. Y., Rogado, N. S., Cava, R. J., & Ong, N. P. (2003). Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature, 423, 425–428.

    Article  Google Scholar 

  139. Wissgott, P., Toschi, A., Usui, H., Kuroki, K., & Held, K. (2010). Enhancement of the NaxCoO2 thermopower due to electronic correlations. Physical Review B, 82, 201106.

    Article  Google Scholar 

  140. Wissgott, P., Toschi, A., Sangiovanni, G., & Held, K. (2011). Effects of electronic correlations and disorder on the thermopower of NaxCoO2. Physical Review B, 84, 085129.

    Article  Google Scholar 

  141. Limelette, P., Hardy, V., Auban-Senzier, P., Jerome, D., Flahaut, D., Hebert, S., et al. (2005). Strongly correlated properties of the thermoelectric cobalt oxide Ca3Co4O9. Physical Review B, 71, 233108.

    Article  Google Scholar 

  142. Tyson, T. A., Chen, Z., Jie, Q., Li, Q., & Tu, J. J. (2009). Local structure of thermoelectric Ca3Co4O9. Physical Review B, 79, 024109.

    Article  Google Scholar 

  143. Wang, Y., Sui, Y., Ren, P., Wang, L., Wang, X. J., Su, W. H., & Fan, H. J. (2010). Strongly correlated properties and enhanced thermoelectric response in Ca3Co4−xMxO9 (M = Fe, Mn, and Cu). Chemistry of Materials, 22, 1155–1163.

    Article  Google Scholar 

  144. Nong, N. V., Pryds, N., Linderoth, S., & Ohtaki, M. (2011). Enhancement of the thermoelectric performance of p-Type Layered Oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Advanced Materials, 23, 2484–2490.

    Article  Google Scholar 

  145. Klie, R. F., Qiao, Q., Paulauskas, T., Gulec, A., Rebola, A., Ogut, S., et al. (2012). Observations of Co4+ in a higher spin state and the increase in the seebeck coefficient of thermoelectric Ca3Co4O9. Physical Review Letters, 108, 196601.

    Article  Google Scholar 

  146. Tieke, B., Zeitler, U., Fletcher, R., Wiegers, S. A. J., Geim, A. K., Maan, J. C., & Henini, M. (1996). Even-denominator filling factors in the thermoelectric power of a two-dimensional electron gas. Physical Review Letters, 76, 3630–3633.

    Article  Google Scholar 

  147. Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., et al. (2007). Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 6, 129–134.

    Article  Google Scholar 

  148. Goswami, S., Siegert, C., Baenninger, M., Pepper, M., Farrer, I., Ritchie, D. A., & Ghosh, A. (2009). Highly enhanced thermopower in two-dimensional electron systems at millikelvin temperatures. Physical Review Letters, 103, 026602.

    Article  Google Scholar 

  149. Ohta, H., Mizuno, T., Zheng, S. J., Kato, T., Ikuhara, Y., Abe, K., et al. (2012). Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas. Advanced Materials, 24, 740–744.

    Article  Google Scholar 

  150. Liu, W. S., Yan, X., Chen, G., & Ren, Z. F. (2012). Recent advances in thermoelectric nanocomposites. Nano Energy, 1, 42–56.

    Article  Google Scholar 

  151. Yan, X. A., Joshi, G., Liu, W. S., Lan, Y. C., Wang, H., Lee, S., et al. (2011). Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Letters, 11, 556–560.

    Article  Google Scholar 

  152. Joshi, G., Yan, X., Wang, H. Z., Liu, W. S., Chen, G., & Ren, Z. F. (2011). Enhancement in thermoelectric figure-of-merit of an n-type half-heusler compound by the nanocomposite approach. Advanced Energy Materials, 1, 643–647.

    Article  Google Scholar 

  153. Birkel, C. S., Zeier, W. G., Douglas, J. E., Lettiere, B. R., Mills, C. E., Seward, G., et al. (2012). rapid microwave preparation of thermoelectric TiNiSn and TiCoSb half-heusler compounds. Chemistry of Materials, 24, 2558–2565.

    Article  Google Scholar 

  154. Rao, C. N. R. (1984). Phase transitions and the chemistry of solids. Accounts of Chemical Research, 17, 83–89.

    Article  Google Scholar 

  155. Imada, M., Fujimori, A., & Tokura, Y. (1998). Metal-insulator transitions. Reviews of Modern Physics, 70, 1039–1263.

    Article  Google Scholar 

  156. Zhang, M. X., & Kelly, P. M. (2009). Crystallographic features of phase transformations in solids. Progress in Materials Science, 54, 1101–1170.

    Article  Google Scholar 

  157. Makiura, R., Yonemura, T., Yamada, T., Yamauchi, M., Ikeda, R., Kitagawa, H., et al. (2009). Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nature Materials, 8, 476–480.

    Article  Google Scholar 

  158. Coronado, E., Marti-Gastaldo, C., Navarro-Moratalla, E., Ribera, A., Blundell, S. J., & Baker, P. J. (2010). Coexistence of superconductivity and magnetism by chemical design. Nature chemistry, 2, 1031–1036.

    Article  Google Scholar 

  159. Kasahara, S., Shi, H. J., Hashimoto, K., Tonegawa, S., Mizukami, Y., Shibauchi, T., et al. (2012). Electronic nematicity above the structural and superconducting transition in BaFe2(As1-xPx)2. Nature, 486, 382–385.

    Article  Google Scholar 

  160. Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D., & Gutfleisch, O. G. (2012). Giant magnetocaloric effect driven by structural transitions. Nature Materials, 11, 620–626.

    Article  Google Scholar 

  161. Wu, C. Z., Feng, F., Feng, J., Dai, J., Peng, L. L., Zhao, J. Y., et al. (2011). Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. Journal of the American Chemical Society, 133, 13798–13801.

    Article  Google Scholar 

  162. Larson, P., Mahanti, S. D., & Kanatzidis, M. G. (2000). Electronic structure and transport of Bi2Te3 and BaBiTe3. Phys. Rev. B, 61, 8162.

    Article  Google Scholar 

  163. Youn, S. J., & Freeman, A. J. (2000). First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3. Physical Review B, 63, 085112.

    Article  Google Scholar 

  164. Sun, Y. F., Cheng, H., Gao, S., Liu, Q. H., Sun, Z. H., Xiao, C., et al. (2012). Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. Journal of the American Chemical Society, 134, 20294–20297.

    Article  Google Scholar 

  165. Makongo, J. P. A., Misra, D. K., Zhou, X. Y., Pant, A., Shabetai, M. R., Su, X. L., et al. (2011). Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. Journal of the American Chemical Society, 133, 18843–18852.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xiao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiao, C. (2016). Introduction. In: Synthesis and Optimization of Chalcogenides Quantum Dots Thermoelectric Materials. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49617-6_1

Download citation

Publish with us

Policies and ethics