Advertisement

Koronarsonografie

  • Andreas Helfen
Chapter

Zusammenfassung

Dieses Kapitel wird Sie in die transthorakale Sonographie der Koronararterien einführen. Wir beschreiben die besonderen Schnittebenen und Geräteeinstellungen und stellen ihnen die direkten und indirekten Kriterien für die Diagnose von Koronarstenosen vor. Weiterhin finden Sie das notwendige Wissen für die Durchführung und Messung der koronaren Flussgeschwindigkeitsreserve, sowie die Interpretation der Messwerte und die Anwendung der Methode an Beispielen aus der klinischen Routine.

Literatur

  1. ACC/AHA guideline update for exercise testing (2002) Circulation 106:188–392)Google Scholar
  2. Crea F et al (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35:1101–1111CrossRefGoogle Scholar
  3. Djordjevic-Dikic AD et al (1996) High-dose adenosine stress echocardiography for noninvasive detection of coronary artery disease, J Am Coll Cardio 28(7):1689–1695CrossRefGoogle Scholar
  4. Dunker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise, Abbildung 9. Physiol Rev 88:1009–1086CrossRefGoogle Scholar
  5. ESC (2014) ESC, EACTS guidelines on myocardial revascularization Eur Heart J 35:2541–2619)CrossRefGoogle Scholar
  6. Galerisi M. et al (2012) The impact of aging and atherosclerotic risk factors on transthoracic coronary flow reserve in subjects with normal coronary angiography. Cardiovascular ultrasound 10:20CrossRefGoogle Scholar
  7. Holte E et al (2013) Transthoracic Doppler echocardiography for detection of stenoses in the left coronary artery by use of poststenotic coronary flow profiles: a comparison with quantitative coronary angiography and coronary flow reserve; J Am Soc Echocardiography 26:77–85CrossRefGoogle Scholar
  8. Johnson NP et al (2012) Integrating noninvasive absolute flow, coronary flow reserve, and ischemic thresholds into a comprehensive map of physiological severity. J Am Coll Cardiol Img 5:430–440CrossRefGoogle Scholar
  9. Joutsiniemi E et al (2012). Resting coronary flow velocity in the functional evaluation of coronary artery stenosis; study on sequential use of computed tomography angiography and transthoracic Doppler echocardiography. Eur Heart J Cardiovasc Imaging 13(1):79–85CrossRefGoogle Scholar
  10. Karamitsos TD et al (2010) Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance, J Cardiovasc Magn Reson 12:66CrossRefGoogle Scholar
  11. Krzanowski M et al (2004) Transthoracic, harmonic mode, contrast enhanced color Doppler echocardiography in detection of restenosis after percutaneous coronary interventions. Prospective evaluation verified by coronary angiography. Eur J Echocardiography 5:51–64CrossRefGoogle Scholar
  12. Lee DD et al (2004) Changes in myocardial blood volume over a wide range of coronary driving pressures: role of capillaries beyond the autoregulatory range. Heart 90:1199–1205CrossRefGoogle Scholar
  13. Montalescot G et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J 34:2949–3003CrossRefGoogle Scholar
  14. Neishi Y et al (2005) Reduced coronary flow reserve in patients with congestive heart failure assessed by transthoracic doppler echocardiography. J Am Sol Echocardiogr 18:15–19CrossRefGoogle Scholar
  15. Park SM et al (2006) Effects of smoking on coronary blood flow velocity and coronary flow reserve assessed by transthoracic Doppler echocardiography. Echocardiography 23(6):465–70CrossRefGoogle Scholar
  16. Pries AR et al (2015) Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 36:3134–3146CrossRefGoogle Scholar
  17. Spaan JAE et al (2006) Physiological basis of clinically used coronary hemodynamic indices, Abbildung 1. Circulation 113:446–455CrossRefGoogle Scholar
  18. Takemoto K et al (2014) Acceleration time of systolic coronary flow velocity to diagnose coronary stenosis in patients with microvascular dysfunction; J Am Soc Echocardiography 27:200–207CrossRefGoogle Scholar
  19. Tesic M et al (2013) Regional difference of microcirculation in patients with asymmetric hypertrophic cardiomyopathy: transthoracic Doppler coronary flow velocity reserve analysis. J Am Soc Echocardiogr 26 (7):775–82CrossRefGoogle Scholar
  20. Toyota E et al (2005) Dynamics of flow velocities in endocardial and epicardial coronary aterioles; Am Physiol Heart Circ Physiol 288:H1598–H1603CrossRefGoogle Scholar
  21. Ueda Y et al (2005) Transthoracic Doppler echocardiographic assessment of coronary flow velocity pattern in patients with acute myocardial infarction implies progression of myocardial damage. J Am Soc Echocardiogr 18:1163–1172CrossRefGoogle Scholar
  22. van de Hoef TP et al (2014) Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv 7:301–311CrossRefGoogle Scholar
  23. van de Hoef TP et al (2015) Fundamental in clinical coronary Physiology: why coronary flow is more important than coronary pressure, review. European Heart Journal 36:3312–3319CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Andreas Helfen
    • 1
  1. 1.St.-Marien-Hospital Medizinische Klinik ILünenDeutschland

Personalised recommendations