Skip to main content

Polarimetry of Man-Made Objects

  • Chapter
  • First Online:
Light Scattering Reviews, Volume 11

Part of the book series: Springer Praxis Books ((PRAXIS))

  • 871 Accesses

Abstract

Polarimetry has already been an active area of research for about fifty years. A primary motivation for research in scatter polarimetry is to understand the interaction of polarized radiation with natural scenes and to search for useful discriminants to classify targets at a distance. In order to study the polarization response of various targets, the matrix models (i.e., 2 × 2 coherent Jones and Sinclair and 4 × 4 average power density Mueller (Stokes) and Kennaugh matrices etc.) and coherent and incoherent target decomposition techniques has been used. This come to be the standard tools for targets characterization. Polarimetric decomposition methods allow a physical interpretation of the different scattering mechanisms inside a resolution cell. Thanks to such decompositions, it is possible to extract information related to the intrinsic physical and geometrical properties of the studied targets. This type of information is inestimable if intensity is measured only. The goal of the chapter is to explain the basics of polarimetric theory, outline its current state of the art, and review some of important applications to study the scattering behaviour of various man-made and urban targets like buildings (tall & short), ships, oil rigs and spills, mines, bridges etc. both in optical range and in radar polarimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhyankar KD, Fymat AL (1969) Relations between the elements of the phase matrix for scattering. J Math Phys 10:1935–1938

    Article  Google Scholar 

  • Agrawal AB, Boerner WM (1989) Redevelopment of Kennaugh’s target characteristic polarization state theory using the polarization transformation ratio formalism for the coherent case. IEEE Trans Geosci Remote Sens 27:2–14

    Article  Google Scholar 

  • Anderson DGM, Barakat R (1994) Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix. J Opt Soc Am A 11:2305–2319

    Article  Google Scholar 

  • Azzam RM (1997) Mueller-matrix ellipsometry: a review. In: Proceedings of SPIE, vol 3121, pp 396–405

    Google Scholar 

  • Azzam RM, Bashara NM (1977) Ellipsometry and Polarized Light (North–Holland, New York)

    Google Scholar 

  • Azzam RM, Bashara NM (1987) Ellipsometry and polarized light. North-Holland, New York

    Google Scholar 

  • Barakat R (1963) Theory of the coherency matrix for light of arbitrary spectral bandwidth. J Opt Soc Am 53:317–322

    Article  Google Scholar 

  • Barakat R (1987) Conditions for the physical realizability of polarization matrices characterizing passive systems. J Mod Opt 34:1535–1544

    Article  Google Scholar 

  • Bicout D, Brosseau Ch, Martinez AS, Schmitt JM (1994) Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter. Phys Rev E 49:1767–1770

    Article  Google Scholar 

  • Bjerhammar A (1951) Application of calculus of matrices to method of least squares; with special references to geodetic calculations. Trans Inst Technol (Stockholm) 49

    Google Scholar 

  • Boerner W-M (1992) Direct and inverse methods in radar polarimetry. Kluwer, Dordrecht

    Book  Google Scholar 

  • Boerner WM, Mott H, Luneburg E, Livingstone C, Brisco B, Brown RJ, Paterson JS, Cloude SR, Krogager E, Lee JS, Schuler DL, van Zyl JJ, Randall D, Budkewitsch P, Pottier E (1998) Polarimetry in radar remote sensing: basic and applied concepts. In: Manual of remote sensing: principles and applications of imaging radar. Wiley, New York

    Google Scholar 

  • Bohren CF, Huffman ER (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Borgeaud M, Shin RT, Kong JA (1987) Theoretical models for polarimetric radar clutter. J. Electromagn Waves Appl 1:73–89

    Article  Google Scholar 

  • Brosseau Ch (1990) Analysis of experimental data for Mueller polarization matrices. Optik 85:83–86

    Google Scholar 

  • Brosseau Ch (1998) Fundamentals of polarized light: a statistical optics approach. Wiley, New York

    Google Scholar 

  • Brosseau C, Givens CR, Kostinski AB (1993) Generalized trace condition on the Mueller-Jones polarization matrix. J Opt Soc Am A 10:2248–2251

    Article  Google Scholar 

  • Brown CE, Fingas MF (2003) Synthetic aperture radar sensors: viable for marine oil spill response? In: Proceedings of 26th AMOP, pp 299–310

    Google Scholar 

  • Bueno JM (2001) Indices of linear polarization for an optical system. J Opt A: Pure Appl Opt 3:470–476

    Article  Google Scholar 

  • Carrieri AH (1999) Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy. Appl Opt 38:3759–3766

    Article  Google Scholar 

  • Carrieri AH, Bottiger JR, Owens DJ, Roese ES (1998) Differential absorption Mueller matrix spectroscopy and the infrared detection of crystalline organics. Appl Opt 37:6550–6557

    Article  Google Scholar 

  • Carrieri AH, Owens DJ, Roese ES, Hung KC, Lim PI, Schultz JC, Talbard MV (2007) Photopolarimetric lidar dual-beam switching device and Mueller matrix standoff detection method. J Appl Remote Sens 1:013502

    Article  Google Scholar 

  • Carrieri AH, Owens DJ, Schultz JC (2008) Infrared Mueller matrix acquisition and preprocessing system. Appl Opt 47:5019–5027

    Article  Google Scholar 

  • Carrieri AH, Copper J, Owens DJ, Roese ES, Bottiger JR, Everly RD, Hung KC (2010) Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection. Appl Opt 49:382–393

    Article  Google Scholar 

  • Chipman RA (1995) Polarimetry. In: Handbook of optics, vol II. McGraw Hill, New York

    Google Scholar 

  • Chipman RA (1999) Depolarization. In: Proceedings of SPIE, vol 3754, pp 14–20

    Google Scholar 

  • Chipman RA (2005) Depolarization index and the average degree of polarization. Appl Opt 44:2490–2495

    Article  Google Scholar 

  • Cloude SR (1986) Group theory and polarization algebra. Optik 7:26–36

    Google Scholar 

  • Cloude SR (2010) Polarization: applications in remote sensing. Oxford University Press, New York

    Google Scholar 

  • Cloude SR, Pottier E (1995) Concept of polarization entropy in optical scattering. Opt Eng 34:1599–1610

    Article  Google Scholar 

  • Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34:498–518

    Article  Google Scholar 

  • Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35:68–78

    Article  Google Scholar 

  • Cloude SR, Papathanassiou KP, Pottier E (2001) Radar polarimetry and polarimetric interferometry. IEICE Trans Electron, E84-C:1814–1822

    Google Scholar 

  • Collett E (1993) Polarized light: fundamentals and applications. Marcel Decker, New York

    Google Scholar 

  • DeBoo BJ, Sasian JM, Chipman RA (2005) Depolarization of diffusely reflecting man-made objects. Appl Opt 44:5434–5445

    Article  Google Scholar 

  • Deibler LL, Smith MH (2001) Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry. Appl Opt 40:3659–3667

    Article  Google Scholar 

  • De Martino A, Kim Y-K, Garcia-Caurel E, Laude B and Drevillon B (2003) Optimized Mueller polarimeter with liquid crystals. Opt Lett 28: 616–618

    Google Scholar 

  • Demirev PA, Feldman AB, Lin JS (2005) Chemical and biological weapons: current concepts for future defenses. Johns Hopkins APL Tech Dig 26:321–333

    Google Scholar 

  • Dong Y, Richards JA (1995a) Studies of the cylinder-ground double bounce scattering mechanism in forest backscatter models. IEEE Trans Geosci Remote Sens 33:229–231

    Article  Google Scholar 

  • Dong Y, Richards JA (1995b) Forest discrimination using SAR multifrequency and multipolarization data. Proc IGARSS

    Google Scholar 

  • Dong Y, Forster BC, Ticehurst C (1996) Decompositions of radar polarization signatures from built and natural targets. Int Arch Photogrammetry Remote Sens XXXI(Part B7):196–202

    Google Scholar 

  • Dore N, Patruno J, Sarti F, Ruescas AB, Hernandez M (2010) Monitoring of UNESCO sites in danger, including Samarra (Iraq) and Chan Chan (Peru), using optical and radar data. In: Proceedings of EARSeL

    Google Scholar 

  • Dore N, Patruno J, Pottier E, Crespi M (2013) New research in polarimetric SAR technique for archaeological purposes using ALOS PALSAR data. Archaeol Prospect 20:79–87

    Article  Google Scholar 

  • Dubois PC, Norikane I (1987) Data volume reduction for imaging radar polarimetry. Proc IGARSS 691–696

    Google Scholar 

  • Elachi C (1987) Introduction to the physics and techniques of remote sensing. Wiley, New York

    Google Scholar 

  • Espinosa-Luna R, Bernabeu E (2007) On the Q(M) depolarization metric. Opt Commun 277:256–258

    Article  Google Scholar 

  • Evans DL, Farr TG, van Zyl JJ, Zebker HA (1988) Radar polarimetry: analysis tools and applications. IEEE Trans Geosci Remote Sens 26:774–789

    Article  Google Scholar 

  • Freeman A, Durden SL (1998) A three-component scattering model for polarimetric SAR data. IEEE Trans Geosci Remote Sens 36:345–351

    Article  Google Scholar 

  • Fry ES, Kattawar GW (1981) Relationships between elements of the Stokes matrix. Appl Opt 20:2811–2814

    Article  Google Scholar 

  • Gade M, Alpers W, Huhnerfuss H, Masuko H, Kobayashi T (1998) Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR. J Geophys Res 103:18851–18866

    Article  Google Scholar 

  • Gerrard A, Burch JM (1975) Introduction to matrix methods in optics. Wiley, New York

    Google Scholar 

  • Gil JJ (2000) Characteristic properties of Mueller matrices. J Opt Soc Am A 17:328–334

    Article  Google Scholar 

  • Gil JJ (2007) Polarimetric characterization of light and media. Eur Phys J Appl Phys 40:1–47

    Article  Google Scholar 

  • Gil JJ, Bernabeu E (1985) A depolarization criterion in Mueller matrices. Opt Acta 32:259–261

    Article  Google Scholar 

  • Gil JJ, Bernabeu E (1986) Depolarization and polarization indexes of an optical system. Opt Acta 33:185–189

    Article  Google Scholar 

  • Gil JJ, Bernabeu E (1987) Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix. Optik 76:67–71

    Google Scholar 

  • Givens CR, Kostinski AB (1993) A simple necessary and sufficient condition on physically realizable Mueller matrices. J Mod Opt 40:471–481

    Article  Google Scholar 

  • Goldstein DH (2008) Polarization measurements of automobile paints. Proc SPIE 6972:69720V–1

    Article  Google Scholar 

  • Guissard A (1994) Mueller and Kennaugh matrices in radar polarimetry. IEEE Trans Geosci Remote Sens 32:590–597

    Article  Google Scholar 

  • Hauge PS (1980) Recent developments in instrumentation in ellipsometry. Surf Sci 96:108–140

    Article  Google Scholar 

  • Haugland SM, Bahar E, Carrieri AH (1992) Identification of contaminant coatings over rough surfaces using polarized infrared scattering. Appl Opt 31:3847–3852

    Article  Google Scholar 

  • Hellmann M, Cloude SR (2001) Discrimination between low metal content mine and non-mine-targets using polarimetric ultra-wide-band radar. Int Geosci Remote Sens Symp 3:1113–1115

    Google Scholar 

  • Hovenier JW (1969) Symmetry relations for scattering of polarized light in a slab of randomly oriented particles. J Atmos Sci 26:488–499

    Article  Google Scholar 

  • Hovenier JW (1970) Principles of symmetry for polarization studies of planets. Astron Astrophys 7:86–90

    Google Scholar 

  • Hovenier JW (1994) Structure of a general pure Mueller matrix. Appl Opt 33:8318–8324

    Article  Google Scholar 

  • Hovenier JW, Mackowski DW (1998) Symmetry relations for forward and backward scattering by randomly oriented particles. J Quant Spectrosc Radiat Transfer 60:483–492

    Article  Google Scholar 

  • Hovenier JW, van der Mee CVM (2000) Basic relationships for matrices describing scattering by small particles. In: Mishchenko MI, Hovenier JW, Travis LD (eds) Light scattering by nonspherical particles: theory, measurements, and applications. Academic Press, San Diego, pp 61–85

    Chapter  Google Scholar 

  • Hovenier JW, van de Hulst HC, van der Mee CVM (1986) Conditions for the elements of the scattering matrix. Astron Astrophys 157:301–310

    Google Scholar 

  • Hu Ch-R, Kattawar GW, Parkin ME, Herb P (1987) Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer. Appl Opt 26:4159–4173

    Article  Google Scholar 

  • Hurwitz H, Jones CR (1941) A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems. J Opt Soc Am 31:493–499

    Article  Google Scholar 

  • Huynen JR (1970) Phenomenological theory of radar targets. PhD dissertation, Delft Technical University, The Netherlands

    Google Scholar 

  • Jones RC (1941) A new calculus for the treatment of optical systems. I. Description and discussion of the calculus. J Opt Soc Am 31:488–493

    Article  Google Scholar 

  • Jones RC (1942) A new calculus for the treatment of optical systems. IV. J Opt Soc Am 32:486–493

    Article  Google Scholar 

  • Jones RC (1947) A new calculus for the treatment of optical systems. V. A more general formulation and description of another calculus. J Opt Soc Am 37:107–110

    Article  Google Scholar 

  • Jones RC (1956) A new calculus for the treatment of optical systems. VIII. Electromagnetic theory. J Opt Soc Am 46:126–131

    Article  Google Scholar 

  • Jones DG, Goldstein DH, Spaulding JC (2006) Reflective and polarimetric characteristics of urban materials. Proc SPIE 6240:62400A(10)

    Google Scholar 

  • Kaplan B, Ledanois G, Drevillon B (2001) Mueller matrix of dense polystyrene latex sphere suspensions: measurements and Monte Carlo simulation. Appl Opt 40:2769–2777

    Article  Google Scholar 

  • Kennaugh K (1951) Effects of type of polarization on echo characteristics. Tech. Rep OH 389-4, 35, and OH 381-9, 39

    Google Scholar 

  • Kennaugh K (1952) Polarization properties of radar reflections. M.Sc. Thesis, The Ohio State University, Columbus, Ohio

    Google Scholar 

  • Kim K, Mandel L, Wolf E (1987) Relationship between Jones and Mueller matrices for random media. J Opt Soc Am A 4:433–437

    Article  Google Scholar 

  • Kim YL, Pradhan P, Kim MH, Backman V (2006) Circular polarization memory effect in low-coherence enhanced backscattering of light. Opt Lett 31:2744–2746

    Article  Google Scholar 

  • Kliger DS, Lewis JW, Randall CE (1990) Polarized light in optics and spectroscopy. Academic Press, New York

    Google Scholar 

  • Kokhanovsky AA (2001) Light scattering media optics: problems and solutions. Praxis, Chichester, UK

    Google Scholar 

  • Kokhanovsky AA (2003a) Parameterization of the Mueller matrix of oceanic waters. J Geophys Res 108:3175

    Article  Google Scholar 

  • Kokhanovsky AA (2003b) Polarization optics of random media. Praxis, Chichester, UK

    Google Scholar 

  • Kokhanovsky AA (2003c) Optical properties of irregularly shaped particles. J Phys D Appl Phys 36:915–923

    Article  Google Scholar 

  • Kong JA, Swartz AS, Yueh HA, Novak LM, Shin RT (1987) Identification of terrain cover using the optimum polarimeter classifier. J Electromagn Waves Appl 2:171–194

    Google Scholar 

  • Kostinski AB (1992) Depolarization criterion for incoherent scattering. Appl Opt 31:3506–3508

    Article  Google Scholar 

  • Kostinski AB, Givens CR, Kwiatkowski JM (1993) Constraints on Mueller matrices of polarization optics. Appl Opt 32:1646–1651

    Article  Google Scholar 

  • Krogager E (1990) A new decomposition of the radar target scattering matrix. Electron Lett 26:1525–1526

    Article  Google Scholar 

  • Lankaster P, Tismenetsky M (1985) The theory of matrices. Academic Press, San Diego

    Google Scholar 

  • Lasaponara R, Masini N (2013) satellite synthetic aperture radar in archaeology and cultural landscape: an overview. Archaeol Prospect 20:71–78

    Article  Google Scholar 

  • Lawless R, Xie Y, Yang P et al (2006) Polarization and effective Mueller matrix for multiple scattering of light by nonspherical ice crystals. Opt Express 14:6381–6393

    Article  Google Scholar 

  • Lee J-S, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, New York

    Book  Google Scholar 

  • Lee J-S, Krogager E, Ainsworth ThL, Boerner W-M (2006) Polarimetric analysis of radar signature of a manmade structure. IEEE Geosci Remote Sens Lett 3:555–559

    Article  Google Scholar 

  • Lewis GD, Jordan DL, Jakeman E (1998) Backscatter linear and circular polarization analysis of roughened aluminum. Appl Opt 37:5985–5992

    Article  Google Scholar 

  • Lu S-Y, Chipman RA (1994) Homogeneous and inhomogeneous Jones matrices. J Opt Soc Am A 11:766–773

    Article  Google Scholar 

  • Lu S-Y, Chipman RA (1996) Interpretation of Mueller matrices based on polar decomposition. J Opt Soc Am A 13:1106–1113

    Article  Google Scholar 

  • Lueneburg E (1995) Principles of radar polarimetry-using the directional Jones vector approach. IEICE Trans Electron E78-C:1339–1345

    Google Scholar 

  • Manickavasagam S, Menguc MP (1998) Scattering-matrix elements of coated infinite-length cylinders. Appl Opt 37:2473–2482

    Article  Google Scholar 

  • Mar’enko VV, Savenkov SN (1994) Representation of arbitrary Mueller matrix in the basis of matrices of circular and linear anisotropy. Opt Spectrosc 76:94–96

    Google Scholar 

  • Mattia F, Le Toan T, Souyris JC, De Carolis G et al (1997) The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans Geosci Remote Sens 35:954–965

    Article  Google Scholar 

  • McNairna H, Duguay C, Brisco B, Pultz TJ (2002) The effect of soil and crop residue characteristics on polarimetric radar response. Remote Sens Environ 80:308–320

    Article  Google Scholar 

  • Migliaccio M, Gambardella A, Tranfaglia M (2007) SAR polarimetry to observe oil spills. IEEE Trans. Geosci. Remote Sens. 45:506–511

    Article  Google Scholar 

  • Migliaccio M, Nunziata F, Gambardella A (2008) Polarimetric signature for oil spill observation. In: Proceedings of US/EU-Baltic international symposium, pp 1–5

    Google Scholar 

  • Migliaccio M, Nunziata F, Gambardella A (2009a) On the copolarised phase difference for oil spill observation. Int J Remote Sens 30:1587–1602

    Article  Google Scholar 

  • Migliaccio M, Gambardella A, Nunziata F, Shimada M, Isoguchi O (2009b) The PALSAR polarimetric mode for sea oil slick observation. IEEE Trans Geosci Remote Sens 47:4032–4041

    Article  Google Scholar 

  • Mishchenko MI, Hovenier JW (1995) Depolarization of light backscattered by randomly oriented nonspherical particles. Opt Lett 20:1356–1358

    Article  Google Scholar 

  • Mishchenko MI, Travis LD (2000) Polarization and depolarization of light. In: Moreno F, González F (eds) Light scattering from microstructures. Springer, Berlin, pp 159–175

    Chapter  Google Scholar 

  • Mishchenko MI, Hovenier JW, Travis LD (eds) (2000) Light scattering by nonspherical particles: theory, measurements, and applications. Academic Press, San Diego

    Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles. Radiative transfer and coherent backscattering, Cambridge University Press, Cambridge

    Google Scholar 

  • Mishchenko MI, Rosenbush VK, Kiselev NN, Lupishko DF, Tishkovets VP, Kaydash VG, Belskaya IN, Efimov YS, Shakhovskoy NM (2010) Polarimetric remote sensing of solar system objects. Akademperiodyka, Kyiv

    Google Scholar 

  • Moore EH (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 26:394–395

    Google Scholar 

  • Moriyama T, Nakamura M, Yamaguchi Y, Yamada H, Boerner W-M (1997) Radar polarimetry applied to the classification of target buried in the underground. Proc SPIE 3120:182–189

    Article  Google Scholar 

  • Moriyama T, Yamaguchi y, Uratsuka s, Umehara t et al (2005) A study on polarimetric correlation coefficient for feature extraction of polarimetric SAR data. IEICE Trans Commun E88-B(6):2355–2361

    Google Scholar 

  • Mott H (2007) Remote sensing with polarimetric radar. Wiley, New York

    Google Scholar 

  • Mueller H (1948) The foundation of optics. J Opt Soc Am 38:661

    Google Scholar 

  • Munoz O, Volten H, de Haan JF, Vassen W, Hovenier JW (2001) Experimental determination of scattering matrices of fly ash and clay particles at 442 and 633 nm. J Geophys Res 106:22833–22844

    Article  Google Scholar 

  • Munoz O, Volten H, de Haan JF, Vassen W, Hovenier JW (2002) Experimental determination of the phase function and degree of linear polarization of El Chichon and Pinatubo volcanic ashes. J Geophys Res 107(D13):4174

    Article  Google Scholar 

  • Munoz O, Volten H, Hovenier JW, Veihelmann B, van der Zande WJ, Waters LBFM, Rose WI (2004) Scattering matrices of volcanic ash particles of Mount St. Helens, Redoubt, and Mount Spurr Volcanoes. J Geophys Res 109:D 16201

    Google Scholar 

  • Muttiah RS (ed) (2002) From laboratory spectroscopy to remotely sensed spectra of terrestrial ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Nagirner DI (1993) Constrains on matrices transforming Stokes vectors. Astron Astrophys 275:318–324

    Google Scholar 

  • Nesti G (1998) Backscattering from rough dielectric surfaces. EMSL Report, SAI-JRC, Ispra, Italy

    Google Scholar 

  • Noble H, Lam W-ST, Chipman RA (2009) Inferring the orientation of texture from polarization parameters. Proc SPIE 7461:746109(6)

    Google Scholar 

  • Novak LM, Burl MC (1990) Optimal speckle reduction in polarimetric SAR imagery. IEEE Trans Aerosp Electron Syst 26:293–305

    Article  Google Scholar 

  • Nunziata F, Gambardella A, Migliaccio M (2008) On the Mueller scattering matrix for SAR sea oil slick observation. IEEE Geosci Remote Sens Lett 5:691–695

    Article  Google Scholar 

  • Oberemok EA, Savenkov SN (2003) Structure of deterministic Mueller matrices and their reconstruction in the method of three input polarizations. J Appl Spectrosc 70:224–229

    Article  Google Scholar 

  • Ossikovski R (2008) Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition. J Opt Soc Am A 25:473–482

    Article  Google Scholar 

  • Ossikovski R (2009) Analysis of depolarizing Mueller matrices through a symmetric decomposition. J Opt Soc Am A 26:1109–1118

    Article  Google Scholar 

  • Park S-E, Yamaguchi Y, Kim D-J (2013) Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR. Remote Sens Environ 132:212–220

    Article  Google Scholar 

  • Parke NG III (1949) Optical algebra. J Math Phys 28:131–139

    Article  Google Scholar 

  • Parke NG III (1948) Matrix optics. PhD thesis, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Patruno J, Dore N, Crespi M, Pottier E (2013) Polarimetric multifrequency and multi-incidence SAR sensors analysis for archaeological purposes. Archaeol Prospect 20:89–96

    Article  Google Scholar 

  • Penrose R (1955) A generalized inverse for matrices. Proc Camb Philos Soc 151:406–413

    Article  Google Scholar 

  • Perrin F (1942) Polarization of light scattering by isotropic opalescent media. J Chem Phys 10:415–427

    Article  Google Scholar 

  • Petryk MWP (2007) Promising spectroscopic techniques for the portable detection of condensed-phase contaminants on surfaces. Appl Sp Rev 42:287–343

    Article  Google Scholar 

  • Potton RJ (2004) Reciprocity in optics. Rep Prog Phys 67:717–754

    Article  Google Scholar 

  • Priezzhev AV, Tuchin VV, Shubochkin LP (1989) Laser diagnostics in biology and medicine. Nauka, Moscow (in Russian)

    Google Scholar 

  • Rao AVG, Mallesh KS, Sudha (1998a) On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix. J Mod Opt 45:955–987

    Google Scholar 

  • Rao AVG, Mallesh KS, Sudha (1998b) On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jones-derived Mueller matrices. J Mod Opt 45:989–999

    Google Scholar 

  • Ray TW, Farr TG, van Zyl JJ (1992) Detection of land degradation with polarimetric SAR. Geophys Res Lett 19:1587–1590

    Article  Google Scholar 

  • Rojas-Ochoa LF, Lacoste D, Lenke R et al (2004) Depolarization of backscattered linearly polarized light. J Opt Soc Am A 21:1799–1804

    Article  Google Scholar 

  • Savenkov SN (2002) Optimization and structuring of the instrument matrix for polarimetric measurements. Opt Eng 41:965–972

    Article  Google Scholar 

  • Savenkov SN (2007) Analysis of generalized polarimetric measurement equation. Proc SPIE 6682:668214

    Article  Google Scholar 

  • Savenkov SN, Muttiah RS (2004) Inverse polarimetry and light scattering from leaves. In: Photopolarimetry in remote sensing. Springer, Netherlands

    Google Scholar 

  • Savenkov SN, Muttiah RS, Oberemok YA (2003) Transmitted and reflected scattering matrices from an English oak leaf. Appl Opt 42:4955–4962

    Article  Google Scholar 

  • Savenkov SN, Sydoruk OI, Muttiah RS (2005) The conditions for polarization elements to be dichroic and birefringent. J Opt Soc Am A 22:1447–1452

    Article  Google Scholar 

  • Savenkov SN, Marienko VV, Oberemok EA, Sydoruk OI (2006) Generalized matrix equivalence theorem for polarization theory. Phys Rev E 74:056607

    Article  Google Scholar 

  • Savenkov SN, Muttiah RS, Yushtin KE, Volchkov SA (2007a) Mueller-matrix model of an inhomogeneous, linear, birefringent medium: single scattering case. J Quant Spectrosc Radiat Transfer 106:475–486

    Article  Google Scholar 

  • Savenkov SN, Sydoruk OI, Muttiah RS (2007b) Eigenanalysis of dichroic, birefringent, and degenerate polarization elements: a Jones-calculus study. Appl Opt 46:6700–6709

    Article  Google Scholar 

  • Saxon DS (1955) Tensor scattering matrix for electromagnetic fields. Phys Rev 100:1771–1775

    Article  Google Scholar 

  • Schuler DL, Lee JS, De Grandi G (1996) Measurement of topography using polarimetric SAR images. IEEE Trans Geosci Remote Sens 34:1266–1277

    Article  Google Scholar 

  • Sekera Z (1966) Scattering matrices and reciprocity relationships for various representations of the state of polarization. J Opt Soc Am 56:1732–1740

    Article  Google Scholar 

  • Shindo Y (1995) Applications of polarized modulator technique in polymer science. Opt Eng 34:3369–3384

    Article  Google Scholar 

  • Shurcliff WA (1962) Polarized light: production and use. Harvard University Press, Harvard

    Book  Google Scholar 

  • Simon R (1982) The connection between Mueller and Jones matrices of polarization optics. Opt Commun 42:293–297

    Article  Google Scholar 

  • Simon R (1987) Mueller matrices and depolarization criteria. J Mod Opt 34:569–575

    Article  Google Scholar 

  • Sinclair G (1950) Transmission and reception of elliptically polarized waves. Proc IRE 38:148–151

    Article  Google Scholar 

  • Smith MH (2002) Optimization of a dual-rotating-retarder Mueller matrix polarimeter. Appl Opt 41:2488–2495

    Article  Google Scholar 

  • Sneh A, Weissbrod T (1973) Nile delta: the defunct Pelusiac branch identified. Science 180:59–61

    Article  Google Scholar 

  • Solleillet P (1929) Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann Phys Biol Med 12:23–97

    Google Scholar 

  • Sridhar R, Simon R (1994) Normal form for Mueller matrices in polarization optics. J Mod Opt 41:1903–1915

    Article  Google Scholar 

  • Srinivasa Reddy K, Mohan kumar V, Chandralingam S, Raghavendra Rao P, Kanaka Rao PV (2010) Optical signature of wood sample—Mueller matrix imaging polarimetry. ARPN J Eng Appl Sci 5:34–38

    Google Scholar 

  • Stabo-Eeg F, Letalick D, Steinvall O, Lindgren M (2008a) Discriminating land mines from natural backgrounds by depolarization. Proc SPIE, 7114:71140H (10)

    Google Scholar 

  • Stabo-Eeg F, Nerbo IS, Kildemo M, Lindgren M (2008b) A well conditioned multiple laser Mueller matrix ellipsometer. Opt Eng 47(7):073604

    Article  Google Scholar 

  • Stabo-Eeg F, Kildemo M, Garcia-Caurel E, Lindgren M (2008c) Design and characterization of achromatic 132° retarders in CaF2 and fused silica. J Mod Opt 55:2203–2214

    Article  Google Scholar 

  • Stewart Ch, Lasaponara R, Schiavon G (2013) ALOS PALSAR analysis of the archaeological site of pelusium. Archaeol Prospect 20:109–116

    Article  Google Scholar 

  • Swami MK, Manhas S, Buddhiwant P, Ghosh N, Uppal A, Gupta PK (2006) Polar decomposition of 3x3 Mueller matrix: a tool for quantitative tissue polarimetry. Opt Express 14:9324–9337

    Article  Google Scholar 

  • Tang ST, Kwok HS (2001) 3x3 Matrix for unitary optical systems. J Opt Soc Am A 18:2138–2145

    Article  Google Scholar 

  • Touzi R, Lopes A (1994) The principle of speckle filtering in polarimetric SAR imagery. IEEE Trans Geosci Remote Sens 32:1110–1114

    Article  Google Scholar 

  • Touzi R, Boerner WM, Lee JS, Lueneburg E (2004) A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Can J Remote Sens 30:380–407

    Article  Google Scholar 

  • Tuchin VV (ed) (2002) Handbook of optical biomedical diagnostics. SPIE Press, Bellingham

    Google Scholar 

  • Tuchin VV, Wang LV, Zimnyakov DA (2006) Optical Polarization in biomedical applications. Springer, Berlin

    Google Scholar 

  • Twietmeyer K, Chipman RA (2008) Optimization of Mueller polarimeters in the presence of error sources. Opt Express 16:11589–11603

    Article  Google Scholar 

  • Tyo JS, Goldstein DL, Chenault DB, Shaw JA (2006) Review of passive imaging polarimetry for remotesensing applications. Appl Opt 45:5453–5469

    Article  Google Scholar 

  • Tyo JS, Wang Zh, Johnson SJ, Hoover BG (2010) Design and optimization of partial Mueller matrix polarimeters. Appl Opt 49:2326–2333

    Article  Google Scholar 

  • Ulaby FT, Moore RK and Fung AK (1982) Microwave Remote Sensing Active and Passive. Vol. II Radar Remote Sensing and Surface Scattering and Emission Theory (Addison–Wesley, New York)

    Google Scholar 

  • Valenzuela GR (1967) Depolarization of EM waves by slightly rough surfaces. IEEE Trans Antennas Propag AP-15(4):552–557

    Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

  • van der Mee CVM (1993) An eigenvalue criterion for matrices transforming Stokes parameters. J Math Phys 34:5072–5088

    Article  Google Scholar 

  • van der Mee CVM, Hovenier JW (1992) Structure of matrices transforming Stokes parameters. J Math Phys 33:3574–3584

    Article  Google Scholar 

  • van Zyl JJ (1989) Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans Geosci Remote Sens 27:37–45

    Google Scholar 

  • van Zyl JJ (1992) Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In: Proceedings of SPIE, vol 1748, pp 184–191

    Google Scholar 

  • van Zyl JJ, Ulaby FT (1990) Scattering matrix representation for simple targets. In: Radar polarimetry for geosciences applications. Artech House, Norwood

    Google Scholar 

  • van Zyl JJ, Zebker HA (1990) Imaging radar polarimetry. In: PIER 3, progress in electromagnetics research. Elsevier, New York

    Google Scholar 

  • van Zyl JJ, Zebker HA, Elachi C (1987) Imaging radar polarization signatures: theory and observation. Radio Sci 22:529–543

    Article  Google Scholar 

  • Vansteenkiste N, Nignolo P, Aspect A (1993) Optical reversibility theorems for polarization: application to remote control of polarization. J Opt Soc Am A 10:2240–2245

    Article  Google Scholar 

  • Volten H, Munoz O, Rol E, de Haan JF, Vassen W, Hovenier JW, Muinonen K, Nousianen T (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J Geophys Res 106(17):375

    Google Scholar 

  • Voss KJ, Fry ES (1984) Measurement of the Mueller matrix for ocean water. Appl Opt 23:4427–4436

    Article  Google Scholar 

  • Whitney C (1971) Pauli-algebraic operators in polarization optics. J Opt Soc Am 61:1207–1213

    Article  Google Scholar 

  • Woodhouse IH (2006) Predicting backscatter-biomass and height-biomass trends using a macroecology model. IEEE Trans Geosci Remote Sens GRS-44:871–877

    Google Scholar 

  • Xing Z-F (1992) On the deterministic and nondeterministic Mueller matrix. J Mod Opt 39:461–484

    Article  Google Scholar 

  • Xu L, Ding J, Cheng AYS (2002) Scattering matrix of infrared radiation by ice finite circular cylinders. Appl Opt 41:2333–2348

    Article  Google Scholar 

  • Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2005) Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans Geosci Remote Sens 43(8):1699–1706

    Article  Google Scholar 

  • Zebker FA, van Zyl JJ (1991) Imaging radar polarimetry: a review. Proc IEEE 79:1583–1606

    Article  Google Scholar 

  • Zubko E, Shkuratov YG, Videen G (2004) Coherent backscattering effect for non-zero elements of Mueller matrix of discrete media at different illumination-observation geometries. J Quant Spectrosc Radiat Transfer 89:443–452

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Savenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Savenkov, S.N. (2016). Polarimetry of Man-Made Objects. In: Kokhanovsky, A. (eds) Light Scattering Reviews, Volume 11. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49538-4_9

Download citation

Publish with us

Policies and ethics