Skip to main content

Radiative Transfer in Spherically and Cylindrically Symmetric Media

  • Chapter
  • First Online:
Light Scattering Reviews, Volume 11

Part of the book series: Springer Praxis Books ((PRAXIS))

  • 864 Accesses

Abstract

The theory of light scattering and radiative transfer in various media is successfully used to solve scientific and practical problems of astrophysics, geophysics, oceanology, and other fields of science that study the interaction of the electro-magnetic radiation with the matter. Methods of this theory are also used to study the propagation of particles in a substance, in particular, in the study of the diffusion of neutrons. These methods are also applied in studying heat transfer processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun A (eds) (1964) Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards, New York

    Google Scholar 

  • Ambartsumyan VA (1943) On the problem of diffuse light reflection by a turbid medium. Dokl Akad Nauk SSSR 38(8):257–261

    Google Scholar 

  • Ambartsumyan VA (1945) Point source of light in a turbid medium. Bull Yerevan Astron Obs 6:3–9

    Google Scholar 

  • Ambartsumyan VA (1960) Scientific works, vol 1. Izd. Akad. Nauk Armen. SSR, Yerevan

    Google Scholar 

  • Ambartsumyan VA (1998) In: Ambartsumyan RV (ed) A life in astrophysics: selected papers of Viktor Ambartsumyan. Allerton Press, New York

    Google Scholar 

  • Apruzese JP (1981) Direct solution of the equation of transfer using frequency and angle-averaged photon-escape probabilities for spherical and cylindrical geometries. J Quant Spectroscop Radiat Transfer 25(5):419–425

    Google Scholar 

  • Avery LW, House LL, Skumanich A (1969) Radiative transport in finite homogeneous cylinders by the MonteCarlo technique. J Quant Spectrosc Radiat Transfer 9(4):519–531

    Article  Google Scholar 

  • Bailey PB (1964) A regorous derivation of some invariant imbedding equations of transport theory. J Math Anal Appl 8(1):144–169

    Article  Google Scholar 

  • Bailey PB, Wing GM (1964) A correction to some invariant imbedding equation of transport theory obtained by particle counting. J Math Anal Appl 8(1):170–174

    Article  Google Scholar 

  • Barkov VI (1960) Radiative transfer in a homogeneous medium for non-conservative case. Optika i Spectroscopiya 9(3):376–385

    Google Scholar 

  • Barkov VI (1963) Radiative transfer in a homogeneous sphere with a central point source. Optika i Spectroscopiya 14(4):537–544

    Google Scholar 

  • Bell D, Glasstone S (1970) Nuclear reactor theory. Van Nostre and Reinhold Co., Princeton

    Google Scholar 

  • Bellman R, Kalaba R (1957) On the principle of invariant imbedding and diffuse refection from cylindrical regions. Proc Nat Acad Sci USA 43(6):514–517

    Article  Google Scholar 

  • Bellman R, Kalaba R, Wing GM (1959) Invariant imbedding and neutron transport theory. IV. Generalized transport theory. J Math Mech 8(4):575–584

    Google Scholar 

  • Bellman R, Kalaba R, Wing GM (1960) Invariant imbedding and mathematical physics. I. Particle processes. J Math Phys 1(4):280–308

    Article  Google Scholar 

  • Bellman R, Kagiwada H, Kalaba R, Prestrud MC (1964) Invariant imbedding and time-dependent transport processes. Elsevier Publishing Co., New York

    Google Scholar 

  • Bellman R, Kalaba R (1965) On the new approach to the numerical solution of a class of particle differential integral equation of transport theory. Proc Nat Acad Sci USA 54(5):1293–1296

    Article  Google Scholar 

  • Bellman R, Kagiwada H, Kalaba R (1966) Invariant imbedding and radiative transfer in spherical shells. J Comput Phys 1(2):245–256

    Article  Google Scholar 

  • Bellman R, Kagiwada H, Kalaba R, Ueno S (1968) Diffuse transmission of light from a central source through an inhomogeneous spherical shell with isotropic scattering. J Math Phys 9(6):909–912

    Article  Google Scholar 

  • Bellman R (1968) A new technique from the numerical solution of Fredholm integral equations. Computing 3(2):131–138

    Article  Google Scholar 

  • Bosma PB (1993) The intensity and state polarization of light scattering in a spherical shell. Astron Astrophys 279(2):572–576

    Google Scholar 

  • Brand PWJL (1979) Scattering from a cylindrical dust cloud in an isotropic radiation field. Astron Astrophys 71(1–2):47–50

    Google Scholar 

  • Busbridge IW (1960) The mathematics of radiative transfer. Cambridge University Press, Cambridge

    Google Scholar 

  • Case KM, Hoffman F, Placzek G (1953) Introduction to the theory of neutron diffusion, vol 1. Government Printing Office, Washington

    Google Scholar 

  • Case KM (1960) Elementary solutions of the transport equation and their applications. Ann Phys 9(1):1–23

    Article  Google Scholar 

  • Case KM, Zweifel PF (1967) Linear transport theory. Addison-Wesley Pub. Co, Reading

    Google Scholar 

  • Case KM, Zalazny R, Kanal M (1970) Spherically symmetric boundary-value problems in one-speed transport theory. J Math Phys 11(1):223–239

    Article  Google Scholar 

  • Cassinelli JP, Hummer DG (1971) Radiative transfer in spherically symmetric systems. II. The non-conservative case and linearly polarized radiation. Mon Notic Roy Astron Soc 154(1):9–21

    Article  Google Scholar 

  • Casti J, Kalaba R (1973) Imbedding methods in applied mathematics. Addison-Wesley Pub. Co., Reading

    Google Scholar 

  • Chandrasekhar S (1934a) The radiative equilibrium of extended stellar atmospheres. Mon Notic Roy Astron Soc 94(5):444–458

    Article  Google Scholar 

  • Chandrasekhar S (1934b) An analysis of the problems of the stellar atmospheres. Astron J Soviet Union 11(6):550–596

    Google Scholar 

  • Chandrasekhar S (1935) On the effective temperatures of extended photospheres. Proc Cambridge Phil Soc 31(3):390–393

    Article  Google Scholar 

  • Chandrasekhar S (1945) On the radiative equilibrium of a stellar atmosphere. V. Astrophys J 101(1):95–107

    Article  Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Oxford University Press, Oxford

    Google Scholar 

  • Chapman RD (1966) Radiative transfer in extended stellar atmospheres. Astrophys J 143(1):61–74

    Article  Google Scholar 

  • Chou YS, Tien CL (1968) A modified moment method for radiative transfer in non-planar systems. J Quant Spectrosc Radiat Transfer 8(3):919–935

    Article  Google Scholar 

  • Crosbie AL, Khalil HK (1972) Radiative transfer in a gray isothermal spherical layer. J Quant Spectrosc Radiat Transfer 12(10):1465–1486

    Article  Google Scholar 

  • Davison B (1957a) Spherical-harmonics method for neutron-transport problems in cylindrical geometry. Ganad J Phys 35(5):576–593

    Google Scholar 

  • Davison B (1957b) Neutron transport theory. Clarendon Press, Oxford

    Google Scholar 

  • Davydov VI, Shikhov SB (1973) Analytical solution of the system of the Carlson Sn-equations for spherical geometry. Physics of nuclear reactors, vol 3. Atomizdat, Moscow, pp 22–28

    Google Scholar 

  • Davydov VI, Shikhov SB (1975) Analytical solution methods for the gas kinetic equation of neutron transport. Atomizdat, Moscow

    Google Scholar 

  • DeBar RB (1967) Difference equations for the Legendre polinomial representation of the transport equation. J Comput Phys 2(2):197–205

    Article  Google Scholar 

  • Dolginov AZ, Gnedin YuN, Silant’ev NA (1995) Propagation and polarization of radiation in cosmic media. Gordon and Breach, Amsterdam

    Google Scholar 

  • Dolin LS, Luchinin AG (1971) Relationship between radiation fields of plane and point isotropic sources in a turbid medium. Izv Akad Nauk SSSR Fiz Atmos Okeana 7(10):1103–1106

    Google Scholar 

  • Dolin LS (1981) On the methods of calculation of brightness for large optical distance from the radiation sources. Izv Akad Nauk SSSR Fiz Atmos Okeana 17(1):102–105

    Google Scholar 

  • Domke H, Ivanov VV (1975) Asymptotic properties of the Green’s function of the equation of transport of polarized radiation. Astron Zh 52(5):1034–1037

    Google Scholar 

  • Domke H (1978a) Linear Fredholm equation for radiative transfer problems in finite plane-parallel media. I. Imbedding in an infinite medium. Astron Nachr 299:95–102

    Article  Google Scholar 

  • Domke H (1978b) Linear Fredholm equation for radiative transfer problems in finite plane-parallelmedia. II. Imbedding in a semi-infinite medium. Astron Nachr 299:87–93

    Article  Google Scholar 

  • Domke H (1983) Biorthogonality and radiative transfer in finite slab atmospheres. J Quant Spectrosc Radiat Transfer 30(2):119–129

    Article  Google Scholar 

  • Dorschner J (1971) Radiative transfer in spherically symmetric dust nebulae. Astron Nachr 292(5–6):225–229

    Google Scholar 

  • Drawbaugh D, Noderer L (1959) The double spherical harmonics method for cylinders and spheres. Nucl Sci Eng 6(1):79–81

    Google Scholar 

  • Dubi A, Horowitz YS (1978) A semi-analytic solution to the transport equation in spherical geometry. Nucl Sci Eng 66(1):118–121

    Google Scholar 

  • Eddington AS (1926) The internal constitution of the stars. Cambridge University Press, Cambridge

    Google Scholar 

  • Erdman RC, Siewert GE (1968) Green’s functions for the one-speed transport equation in spherical geometry. J Math Phys 9(1):81–89

    Article  Google Scholar 

  • Ermakov SM, Mikhailov GA (1982) Statistical modelling. Izd. Nauka, Moscow

    Google Scholar 

  • Ershov YI, Shikhov SB (1972) Integral transforms as a means of solving boundary value problems in neutron transport theory. USSR Comp Matem Matem Fiz 12(3):87–107

    Article  Google Scholar 

  • Ershov YI, Shikhov SB (1973) The solution of transfer theory problems in spherical geometry. USSR Comp Matem Matem Fiz 13(6):202–212

    Google Scholar 

  • Ershov YI, Shikhov SB (1977) Methods for solving boundary value problems in transport theory. Atomizdat, Moscow

    Google Scholar 

  • Ershov YI, Shikhov SB (1985) Mathematical foundation of transport theory, vol 1, 2. Energoatomizdat, Moscow

    Google Scholar 

  • Freimanis J (1986) A point source in an infinite medium. Nauch Inf Astrosoveta 61:95–109

    Google Scholar 

  • Freimanis J (1990) On the completeness of system of eigenfunctions and adjoin functions of radiative transfer equation of polarized radiation. Invest Sun Red Stars 32:20–116 (Riga)

    Google Scholar 

  • Freimanis J (2005) On Green’s functions for spherically symmetric problems of transferof polarized radiation. J Quant Spectosc Radiat Transfer 96:451–472

    Article  Google Scholar 

  • Freimanis J (2009) On Green’s functions for cylindrically symmetric fields of polarized radiation. J Quant Spectosc Radiat Transfer 110:1307–1334

    Article  Google Scholar 

  • Gakhov FD (1966) Boundary value problems. Pregamon Press, Oxford

    Google Scholar 

  • Gakhov FD, Cherskij UI (1978) Equations of convolution type. Izd. Nauka, Moscow

    Google Scholar 

  • Ganapol BD (2008) Analytical benchmarks for nuclear engineering applications: case studies in neutron transport theory. Nuclear Energy Agency, Paris

    Google Scholar 

  • Germogenova TA (1966) Diffusion of the radiation in a spherical shell surrounded a point source. Astrophysics 2(3):125–131

    Article  Google Scholar 

  • Germogenova TA (1971) Numerical methods for solving boundary-value problems for the transport equation. Theoretical and applied problems of light scattering. Izd. Nauka i Tekhnika, Minsk, pp 29–42

    Google Scholar 

  • Germogenova TA (1972) On regular solutions of the transport characteristic equation, vol 21. Preprint of Inst. Prikl. Matem., Akad Nauk SSSR, Moscow

    Google Scholar 

  • Germogenova TA (1974) On the discrete spectrum of the transport characteristic equation. USSR Comp Matem Matem Fiz 14(6):149–165

    Article  Google Scholar 

  • Germogenova TA, Konovalov NV (1974) Asymptotic characteristics of the solution of the transport equation in the inhomogeneous layer problem. USSR Comp Matem Matem Fiz 14(4):107–125

    Article  Google Scholar 

  • Germogenova TA, Konovalov NV (1978) The spectrum of the characteristic equation in the theory of transfer with polarization taken into account, vol 62. Preprint of Inst. Prikl. Matem., Akad. Nauk SSSR, Moscow

    Google Scholar 

  • Germogenova TA (1986) Local properties of solutions of the transport equation. Izd. Nauka, Moscow

    Google Scholar 

  • Germogenova TA, Konovalov NV, Kuz’mina MG (1989) ‘Foundations of the mathematical theory of polarizedradiation transfer (rigorous results). In: Mnatsakanian MA, Pikichian OV (eds) The invariance principle and its applications. Izd. Akad. Nauk Armen. SSR, Yerevan

    Google Scholar 

  • Germogenova TA, Pavelyeva EB (1989) The characteristic equation in radiation transport problems in elongated cylindrical regions. USSR Comp Matem Matem Fiz 29(4):158–170

    Article  Google Scholar 

  • Gorelov VP, Yuferev VI (1971) The solution of the one-speed neutron transport equation in multilayer plane and spherically symmetric systems. USSR Comp Matem Matem Fiz 11(1):171–181

    Article  Google Scholar 

  • Gorelov VP, Ilyin VI, Yuferev VI (1972) Solution of some problems of neutron transport theory by the method of generalized eigenfunctions. USSR Comp Matem Matem Fiz 12(5):200–224

    Article  Google Scholar 

  • Grachov SI (1978) On a problem of radiative diffusion in moving media, II. Spherical symmetry, Vest Lenengrad Univ 1:129–135

    Google Scholar 

  • Grachov SI (1994) Radiative transfer in moving astrophysical media. Trudy Astron Obs St Petersburg Gos Univ 44:203–235

    Google Scholar 

  • Grant IP, Hunt GE (1969a) Discrete space theory of radiative transfer. I. Fundamentals. Proc Roy Soc London Ser A 313(1513):183–197

    Google Scholar 

  • Grant IP, Hunt GE (1969b) Discrete space theory of radiative transfer. II. Stability and non-negativity. Proc Roy Soc London Ser A 313(1513):199–216

    Google Scholar 

  • Greenspan H, Kelber CN, Okrent D (eds) (1968) Computing Methods in Reactor Physics. Gordon and Breach Science Publishing, New York

    Google Scholar 

  • Grinin VP (1994) Non-stationary radiative transfer theory. Trudy Astron Obs St Petersburg Gos Univ 44:236–249

    Google Scholar 

  • Gritton EC, Leonard A (1970) Exact solution to the radiation heat transport equation in gaseous media using singular integral equation theory. J Quant Spectrosc Radiat Transfer 10(10):1095–1118

    Article  Google Scholar 

  • Gruschinske J, Ueno S (1971) Bellman’s new approach to the numerical solution of Fredholm integral equations with positive kernels. J Quant Spectrosc Radiat Transfer 11(6):641–646

    Article  Google Scholar 

  • Heaslet MA, Warming RP (1965) Application of invariance principles to a radiative transfer problem in a homogeneous spherical medium. J Quant Spectrosc Radiat Transfer 5(5):669–682

    Article  Google Scholar 

  • Heaslet MA, Warming RP (1966) Theoretical predictions of radiative transfer in a homogeneous cylindrical medium. J Quant Spectrosc Radiat Transfer 6(6):751–774

    Article  Google Scholar 

  • Hovenier JW, van der Mee C, Domke H (2004) Transfer of polarized light in planetary atmospheres. Basic concepts and practical methods. Kluwer Academic Publisher, Chichester

    Book  Google Scholar 

  • Hummer DG, Rybicki GB (1971) Radiative transfer in spherically symmetric systems. The conservative gray case. Mon Notic Roy Astron Soc 152(1):1–19

    Article  Google Scholar 

  • Hummer DG, Kunasz CV, Kunasz PB (1973) Numerical evaluation of the radiative transfer problems in spherical geometries. Comp Phys Comm 6(1):38–57

    Article  Google Scholar 

  • Hund GE (1968) Radiative transfer in a homogeneous cylindrical atmosphere. SIAM J Math 16(6):1255–1265

    Article  Google Scholar 

  • Ivanov VV (1969) Mean number of photon scattering in a homogeneous optically thick sphere. Stars, nebulae, galaxies. Izd. Akad. Nauk Armen. SSR, Yerevan, pp 27–39

    Google Scholar 

  • Ivanov VV (1973) Transfer of radiation in spectral lines, vol 385. National Bureau of Standards, Special Publication, Washington

    Google Scholar 

  • Ivanov VV (1976a) Radiative transfer in an infinite atmosphere. I. Astrophysics 12(2):158–168

    Article  Google Scholar 

  • Ivanov VV (1976b) Radiative transfer in an infinite atmosphere. II. Astrophysics 12(4):369–379

    Article  Google Scholar 

  • Ivanov VV (1976c) Radiative transfer in a multilayer optically thick atmosphere. I, II. Trudy Astron Obs Leningrad Gos Univ 32:3–39

    Google Scholar 

  • Ivanov VV, Volkov EV (1979) Radiative transfer. Principles of invariance for the Green’s functions. Trudy Astron Obs Leningrad Gos Univ 35:3–30

    Google Scholar 

  • Ivanov VV (1991) 100 years the integral equation of radiative transfer. In: Ivanov AP (ed) Scattering and absorption of light in natural and artificial turbid media. Izd Inst. Fiz. AN Belarus, Minsk, pp 10–36

    Google Scholar 

  • Ivanov VV (1994) Making of radiative transfer theory. Trudy Astron Obs St Petersburg Gos Univ 44:6–29

    Google Scholar 

  • Inönü E (1970) Orthogonality of a set of polynomials encountered in neutron-transport and radiative-transport theories. J Math Phys 11(2):568–577

    Article  Google Scholar 

  • Kalaba R, Ruspini EH (1971) Invariant imbedding and radiative transfer in a homogeneous spherical medium. J Quant Spectrosc Radiat Transfer 11(7):1063–1074

    Article  Google Scholar 

  • Kho TH, Sen KK (1971) On combined operational method for transfer problems in homogeneous spherical media. Astrophys Space Sci 14(2):223–242

    Article  Google Scholar 

  • Kho TH, Sen KK (1972) On combined operational method for transfer problems in homogeneous cylindrical media. Astrophys Space Sci 16(1):151–166

    Article  Google Scholar 

  • Kokhanovsky AA (2003) Polarization Optics of Random Media. Springer-Praxis, Chichester

    Google Scholar 

  • Kolesov AK (1983) Point source in an absorbing and anisotropically scattering infinite uniform medium. Sov Phys Dokl 28:700–703

    Google Scholar 

  • Kolesov AK (1984a) The Green’s functions for equation of radiative transfer in an infinite homogeneous medium with a radial distribution of the sources. Astrophysics 20(1):86–95

    Article  Google Scholar 

  • Kolesov AK (1984b) The asymptotic radiation regime in the outer layers of a homogeneous sphere of large optical radius. Astrophysics 21(2):519–527

    Article  Google Scholar 

  • Kolesov AK (1985a) Asymptotic relations in the theory of radiative transfer in a sphere and a spherical shell. Astrophysics 22(1):107–114

    Article  Google Scholar 

  • Kolesov AK (1985b) Radiation field in media with spherical symmetry. Astrophysics 22(3):339–346

    Article  Google Scholar 

  • Kolesov AK (1985c) On the light regime in a homogeneous spherical envelope. Vest Leningrad Univ 8:73–80

    Google Scholar 

  • Kolesov AK (1986) Radiative transfer in media with cylindrical symmetry. Sov Phys Dokl 31:241–244

    Google Scholar 

  • Kolesov AK, Perov VJu (1987) Radiation field in an infinite dust nebula illuminated by a star. Astrophysics 26(2):147–154

    Article  Google Scholar 

  • Kolesov AK (1990) The radiation field in an infinite medium far from a point source. Vest Leningrad Univ 22:62–67

    Google Scholar 

  • Kolesov AK, Sobolev VV (1990) Nonstationary radiative transfer in stellar atmospheres. Sov Astron 34(2):179–188

    Google Scholar 

  • Kolesov AK, Sobolev VV (1991) On non-stationary radiative transfer. Trudy Astron Obs Leningrad Univ 43:5–27

    Google Scholar 

  • Kolesov AK (1994) Light scattering in spherically symmetric media. Trudy Astron Obs St Petersburg Gos Univ 44:114–130

    Google Scholar 

  • Kolesov AK, Kropacheva NY (2013) Some asymptotic expressions in the theory of non-stationary transfer of radiation. Vest St Petersburg Univ 4(1):127–133

    Google Scholar 

  • Kolesov AK, Kropacheva NY (2014) On asymptotic light regime in an infinite medium far from a linear source of energy. Vest St Petersburg Univ 2(1):152–158

    Google Scholar 

  • Konovalov NN (1974) Asymptotic properties of one-speed radiative transfer solution in homogeneous plane layer. Problems of azimuthal dependence, vol 65. Preprint of the Inst. Prikl. Matem., Akad. Nauk SSSR, Moscow

    Google Scholar 

  • Kosirev NA (1934) Radiative equilibrium of the extended photosphere. Mon Notic Roy Astron Soc 94(5):430–443

    Article  Google Scholar 

  • Kourganoff V (1952) Basic methods in transfer problems. Clarendon Press, Oxford

    Google Scholar 

  • Kunasz PB, Hummer DG (1974) Radiative transfer in spherically symmetric systems. III. Fundamentals of line formation. Mon Notic Roy Astron Soc 166(1):19–55

    Article  Google Scholar 

  • Kuznetsov ES (1951) Ratiative equilibrium of a gaseous envelope surrounding an absolutely black sphere. Isv Akad Nauk SSSR Ser Geofiz 15(3):69–93

    Google Scholar 

  • Kuznetsov ES (1962) Temperature distribution in an infinite cylinder and in a sphere in a state of non-monochromatic radiation equilibrium. USSR Comp Matem Matem Fiz 2(2):230–245

    Article  Google Scholar 

  • Kurchakov AV (1970) An airglow of a homogeneous sphere in the field of the isotropic radiation. Sov Astron A J 47(6):1339–1340

    Google Scholar 

  • Laletin NI (1966) Elementary solutions for neutron transport equations in problems with cylindrical and spherical symmetry. Atom Energy 20(6):585–586

    Article  Google Scholar 

  • Laletin NI (1969a) Green’s functions for the neutron transport equation for problems with cylindrical and spherical symmetry. Atom Energy 26(4):370–371

    Article  Google Scholar 

  • Laletin NI (1969b) Methods of surface psevdosources for solving the transport equation (GN-approximations). In: Marchuk GI (ed) Computional methods in the transport theory. Atomizdat, Moscow, pp 228–249

    Google Scholar 

  • Laletin NI (1974a) Elementary solutions of the one-speed neutron transport equation. In: Shevelev VY (ed) Methods of calculation of thermal neutron fields in the reactors lattices. Atomizdat, Moscow, pp 155–186

    Google Scholar 

  • Laletin NI (1974b) Method of surface psevdosources for solving the neutron transport equation (GN-approximations). In: Shevelev VY (ed) Methods of calculation of thermal neutron fields in the reactors lattices. Atomizdat, Moscow, pp 187–215

    Google Scholar 

  • Leonard A, Mullikin TW (1964) Green’s functions for one-speed neutron transport in an one-dimensional slab and sphere. Proc Nat Acad Sci USA 52(3):683–688

    Article  Google Scholar 

  • Leong TК, Sen KK (1968) Probabilistic model for transfer problem in an externally illuminated spherical shell atmosphere with a perfectly absorbing core. Ann Astrophys 31(5):467–474

    Google Scholar 

  • Leong TК, Sen KK (1969) Probabilistic model for radiative transfer problems for spherical shell medium. Publ Astron Soc Jpn 21(2):167–175

    Google Scholar 

  • Leong TК, Sen KK (1970) Probabilistic model for radiative transfer problems for inhomogeneous infinite cylindrical shell medium. Publ Astron Soc Jpn 22(1):57–74

    Google Scholar 

  • Leong TК, Sen KK (1971a) An integral equation method for transfer problems in spherical shell media. Publ Astron Soc Jpn 23(1):99–115

    Google Scholar 

  • Leong TК, Sen KK (1971b) An integral equation method for transfer problems in infinite cylindrical shell media. Publ Astron Soc Jpn 23(2):247–262

    Google Scholar 

  • Leong TК, Sen KK (1972) A probabilistic model for time-dependent transfer problems in spherical shell media. Mon Notic Roy Astron Soc 160(1):21–36

    Article  Google Scholar 

  • Leong TК (1972) Probabilistic model for time-dependent transfer problems in finite cylindrical shell medium. Astrophys Space Sci 19(2):369–385

    Article  Google Scholar 

  • Leong TК, Sen KK (1973a) Probabilistic model for radiative transfer problems in spherical shell media with complete redistribution in frequency. Mon Notic Roy Astron Soc 163(1):105–116

    Article  Google Scholar 

  • Leong TК, Sen KK (1973b) Probabilistic model for radiative transfer problems in cylindrical shell media with complete redistribution in frequency. Astrophys Space Sci 21(1):59–72

    Article  Google Scholar 

  • Leung CM (1975) Radiation transport in dense interstellar dust clouds. I. Grain temperature. Astrophys J 199(2):340–360

    Article  Google Scholar 

  • Loskutov VM (1974) The albedo of a homogeneous sphere. Vest Leningrad Univ 19:132–135

    Google Scholar 

  • Loskutov VM (1994) ‘Transfer of polarized radiation: Rayleigh scattering. Trudy Astron Obs St Petersburg Gos Univ 44:154–171

    Google Scholar 

  • Marchuk GI (1961) Methods of calculations of nuclear reactors. Gosatomizdat, Moscow

    Google Scholar 

  • Marchuk GI, Mikhailov GA (1967) Results of the solution of some problems in atmospheric optics by a Monte Carlo method. Atmos Oceanic Phys 3:167–171

    Google Scholar 

  • Marchuk GI, Lebedev VI (1981) Numerical methods in the of neutron transport theory, 2nd edn. Atomizdat, Moscow

    Google Scholar 

  • Marshak RE (1947) Note on the spherical harmonic method as applied to the Milne problem for a sphere. Phys Rev 71(7):443–446

    Article  Google Scholar 

  • Maslennikov MV (1969) The Milne problem with anisotropic scattering. American Mathematical Society, Providence, Rhode Island

    Google Scholar 

  • McCrea WH (1928) A note on Dr. P.A.Taylor’s paper ‘The equilibrium of the calcium chromosphere. Mon Notic Roy Astron Soc 88(7):729–740

    Google Scholar 

  • Meyer JF, Jacobs AM (1970) Point source Green’s functions for neutral particle transport. Nucl Sci Eng 40(2):239–245

    Google Scholar 

  • Mika JR (1961) Neutron transport with anisotropic scattering. Nucl Sci Eng 11(4):415–427

    Article  Google Scholar 

  • Mikhailov GA (1987) Optimization of weighting Monte Carlo methods. Izd. Nauka, Moscow

    Google Scholar 

  • Milne EA (1921) Radiative equilibrium in the outer layers of a star: the temperature distribution and the law of darkening. Mon Notic Roy Astron Soc 81:361–388

    Article  Google Scholar 

  • Minin IN (1959) Non-stationary problems of the radiative transfer theory. Vest Leningrad Univ 13:137–141

    Google Scholar 

  • Minin IN (1961) Diffuse reflection from a semi-infinite medium for anisotropic scattering, I. Vest Leningrad Univ 1:133–143

    Google Scholar 

  • Minin IN (1962) On the theory of non-stationary diffusion of radiation. Vest Leningrad Univ 19:124–132

    Google Scholar 

  • Minin IN (1964) On nonstationary glow of a semi-infinite medium. Sov Phys Dokl 9:114–117

    Google Scholar 

  • Minin IN (1966) Diffusion of radiation in a plane layer for anisotropic scattering. Astron Zh 43(6):1244–1260

    Google Scholar 

  • Minin IN (1971) Nonsteady-state emission of a one-dimensional medium of finite optical thickness. Sov Astron A J 15:260–265

    Google Scholar 

  • Minin IN (1988) Theory of radiative transfer in planetary atmospheres. Izd. Nauka, Moscow

    Google Scholar 

  • Mishchenko MI, Dlugach JM, Yanovitskij EG, Zakharova NI (1999) Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. J Quant Spectrosc Raiat Transfer 63(2–6):409–432

    Article  Google Scholar 

  • Mishchenko MI, Dlugach JM, Chondhary J, Zakharova NI (2015) Polarized bidirectional reflectance of optically thick sparse particulate layers: an efficient numerically exact radiative transfer solution. J Quant Spectrosc Radiat Transfer 156:97–108

    Article  Google Scholar 

  • Mnatsakanian MA (1976) Quasi-asymptotic solutions of the problem of radiative transfer in a finite-thickness layer. II—nonconservative scattering. Astrofizika 12(3):451–473

    Google Scholar 

  • Muskhelishvili NI (1962) Singular integral equations. Fizmatgiz, Moscow

    Google Scholar 

  • Nagirner DI (1965) On the light scattering in a spherical nebulae of large optical thickness. Trudy Astron Obs Leningrad Gos Univ 22:66–71

    Google Scholar 

  • Nagirner DI (1972) Scattering of resonance radiation in a sphere. Astrophysics 8(3):210–219

    Article  Google Scholar 

  • Nagirner DI (1974) Theory of nonstationary transfer of radiation. Astrophysics 10(3):274–289

    Article  Google Scholar 

  • Nagirner DI (1986) Transport of radiation in a layer, sphere, and cylinder. Sov Phys Dokl 31:577–580

    Google Scholar 

  • Nagirner DI (1994a) Radiative transfer in a cylinder. I. The resolvent of the basic integral equation. Astrophysics 37(1):69–78

    Article  Google Scholar 

  • Nagirner DI (1994b) Radiative transfer in a cylinder. II. Special problems. Asymptotics. Astrophysics 37(4):362–371

    Article  Google Scholar 

  • Nagirner DI (1995) Radiative transfer in a cylinder. III. Spectrum of the basic integral equation. Astrofizika 38(1):39–47

    Google Scholar 

  • Nonnenmacher TF (1967) Elementary solutions of the monoenergetic Boltzmann equation in spherical geometry. Nukleonik 10(5):275–277

    Google Scholar 

  • Özisik MN, Menning J, Hälg W (1975) Half-range moment method for solution of the transport equation in a spherically symmetric geometry. J Quant Spectrosc Radiat Transfer 15(12):1101–1106

    Article  Google Scholar 

  • Pavelyeva EB (1990) Asymptotic of solution to the equation of radiative transfer in a disk of large radius with a source near the symmetry axis, vol 97. Preprint of the Inst. Prikl. Matem., Akad. Nauk SSSR, Moscow

    Google Scholar 

  • Peierls R (1939) Critical conditions in neutron multiplication. Proc Camb Phil Soc 35(4):610–615

    Article  Google Scholar 

  • Peraiah A (1973) Spectral line formation in extended atmospheres. Mon NoticRoy Astron Soc 162(4):321–327

    Article  Google Scholar 

  • Peraiah A, Grant I (1973) Numerical solution of the radiative transfer equation in spherical shells. J Inst Math Appl 12(1):75–90

    Article  Google Scholar 

  • Peraiah A (1975) Numerical solution of radiative transfer equation in extended spherical atmospheres with Rayleigh phase function. Astron Astrophys 40(1–2):75–80

    Google Scholar 

  • Peraiah A (1978) Line formation in spherical media with partial frequency redistribution. I. Solution of the line transfer. Astrophys Space Sci 58(1):189–205

    Article  Google Scholar 

  • Peraiah A, Varghese BA (1984) Radiative transfer equation in spherically symmetric non-scattering media. Astrophys Space Sci 107(1):177–190

    Article  Google Scholar 

  • Peraiah A, Varghese BA (1985a) Solution of radiative transfer equation with spherical symmetry in partially scattering medium. Astrophys Space Sci 108(1):67–80

    Article  Google Scholar 

  • Peraiah A, Varghese BA (1985b) Radiative transfer equation in spherical symmetry. Astrophys J 290(2):411–423

    Article  Google Scholar 

  • Pikidjian HV (1978) On the Green’s function of a non-coherent, anisotropically scattering plane-parallel slab. Astrofizika 14(1):169–190

    Google Scholar 

  • Poon PTY, Ueno S (1974) Sobolev’s Ф-function of radiative transfer in planar and spherical scattering media. Astrophys Space Sci 28(1):233–244

    Article  Google Scholar 

  • Pustylnick IB (1964) On the theory of a grey extended atmosphere. Publ Tartu Astrophys Obs 34:381–395

    Google Scholar 

  • Pustylnick IB (1965) On the problem of continuous spectrum for the stars with extended atmospheres. Publ Tartu Astrophys Obs 35:138–152

    Google Scholar 

  • Rogovtsov NN (1980) Reconstruction of the internal radiation field distribution from its characteristics at the scattering medium boundaries. Isvestiya, Atmos Ocean Phys 16:160–165

    Google Scholar 

  • Rogovtsov NN (1981a) The transfer theory and the general invariance principle. Dokl Akad Nauk BSSR 25:420–423

    Google Scholar 

  • Rogovtsov NN (1981b) Partial invariant determination and the relation between the radiation fields within a scattering volume and at the boundaries. J Appl Spectrosc 34:241–246

    Article  Google Scholar 

  • Rogovtsov NN (1983) Invariance relations and radiative transfer problems for complex configuration media. Dokl Akad Nauk BSSR 27:34–37

    Google Scholar 

  • Rogovtsov NN (1985) On calculation of the radiation field characteristics in complex form scattering objects on the basis of the general invariance relation. Izd AkadNauk SSSR Fiz Atmos Okeana 21:1111–1112

    Google Scholar 

  • Rogovtsov NN, Samson AM (1985) Asymptotical expressions for the internal radiation fields in plane-parallel media and applications to the calculation of mean emission durations of a layer and spherical shell. Astrophysics 23:468–476

    Article  Google Scholar 

  • Rogovtsov NN (1986a) Radiative transfer in an optically thick sphere. Zh Prikl Spectrosc 43:659–663

    Google Scholar 

  • Rogovtsov NN (1986b) Asymptotical formulae for radiation fields in spherically and cylindrically symmetrical optically thick scattering media. Dokl Akad Nauk BSSR 30:901–904

    Google Scholar 

  • Rogovtsov NN (1990) On asymptotical formulas for the radiative transfer equation Green’s function for scattering media of a cylindrical form. Dokl Akad Nauk BSSR 34:1081–1084

    Google Scholar 

  • Rogovtsov NN (1992a) On asymptotical formulas of the radiative transfer equation Green’s function for scattering media of a layer form or a rotating cylinder form. Dokl Akad Nauk Belarus 36:26–29

    Google Scholar 

  • Rogovtsov NN (1992b) On the derivation of the radiative transfer equation surface Green’s function for the case of cylindrical form medium. Dokl Akad Nauk Belarus 36:561–598

    Google Scholar 

  • Rogovtsov NN (1999) Properties and principles of invarince. Applications to solving mathematical physics problem, part 1, Education Ministry of RB, Minsk

    Google Scholar 

  • Rogovtsov NN, Borovik FN (2009) The characteristic equation of radiative transfer theory. In: Kokhanovsky A (ed) Light scattering reviews, vol 4. Springer-Praxis, Chichester, pp 347–429

    Google Scholar 

  • Rogovtsov NN (2010) General invariance relations reduction method and its applications to solutions of radiative transfer problems for turbid media of various configurations. In: Kokhanovsky A (ed) Light scattering reviews, vol 5. Springer-Praxis, Chichester, pp 249–327

    Chapter  Google Scholar 

  • Rogovtsov NN, Borovik FN, Kokhanovsky AA (2010) An effective algorithm of calculation the reflection function for the case of an arbitrary phase function. In: Abstracts NATO advanced study institute of special detection technique (polarimetry) and remote sensing, 12–25 Sept, Kyiv (Ukraine), p 99

    Google Scholar 

  • Rogovtsov NN (2015a) Constructive theory of scalar characteristic equations of the theory of radiation transport: I. Basic assertions of the theory and conditions for the applicability of the truncation method. Diff Equ 51(2):268–281

    Article  Google Scholar 

  • Rogovtsov NN (2015b) Constructive theory of scalar characteristic equations of the theory of radiation transport: II. Algorithms for finding solutions and then analytic representations. Diff Equ 51(5):661–673

    Article  Google Scholar 

  • Rybicki GB (1970) A note on the computation of diffuse reflection function for spherical shells. J Comp Phys 6(1):131–135

    Article  Google Scholar 

  • Rybicki GB, Hunmer DG (1975) A note on the “peaking effect” in spherical-geometry transfer problems. Mon Notic Roy Astron Soc 170(1):423–427

    Article  Google Scholar 

  • Sabashvili SA (1973) Multiple scattering of resonance radiation in a plane layer and in a sphere. Astrofizika 9(2):273–292

    Google Scholar 

  • Sahni DC (1975) Neutron transport problems in a spherical shell. J Math Phys 16(11):2260–2270

    Article  Google Scholar 

  • Sanford MT (1973) Radiative transfer in spherically symmetric circumstellar dust envelope. Astrophys J 183(2, pt.1):555–564

    Google Scholar 

  • Schmid-Burgk J (1973) Integral kernels and exact solutions to some radiative problems in spherical geometries. Astrophys J 181(3, pt.1):865–874

    Google Scholar 

  • Schmid-Burgk J (1975) Radiative transfer through spherically-symmetric atmospheres and shells. Astron Astrophys 40(3):249–255

    Google Scholar 

  • Schmid-Burgk J, Scholz M (1975) Extended static stellar atmospheres. II. Location in the HR-diagram and some properties of extended atmosphere stars. Astron Astrophys 41(1):41–45

    Google Scholar 

  • Schwarzschild K (1914) ÜberDiffusion and Absorption in der Sonnenatmosphäre. Sitzber. Akad. Wissenseh., Berlin, pp 1183–1202

    Google Scholar 

  • Sen KK, Wilson SJ (1993) Generalized Eddington approximation for radiative transfer problems in sphericallysymmetric moving media. Astrophys Space Sci 203(2):227–240

    Article  Google Scholar 

  • Sheaks OJ (1972) Particle transport in spherical medium with a central black cavity. J Math Phys 13(2):203–209

    Article  Google Scholar 

  • Shikhov SB, Troyanovski VB (1983) Theory of nuclear reactors, vol. 2. Gas kinetic theory. Energoatomizdat, Moscow

    Google Scholar 

  • Shkurpelov AA, Ershov YI (1967) Solution of the one-speed equation of neutron transport in a spherically symmetric medium. Zh Vychisl Mat i Mat Fiz 7(6):258–264

    Google Scholar 

  • Shkurpelov AA, Shikhov SB, Ershov YuI (1970) Solution of the single-velocity kinetic equation of neutron transport in spherical geometry with scatter indicatrix linearly dependent on the angle. USSR Comp Matem Matem Fiz 10(3):257–264

    Article  Google Scholar 

  • Siewert CE, Benoist P (1979) The SN-method in neutron-transport theory. I. Theory and applications. Nucl Sci Eng 69(2):156–160

    Article  Google Scholar 

  • Siewert CE, Grandjean P (1979) Three-basic neutron-transport problems in spherical geometry. Nucl Sci Eng 70(1):96–110

    Google Scholar 

  • Siewert CE, Maiorino JR (1979) A point source in a finite sphere. J Quant Spectrosc Radiat Transfer 22(5):435–439

    Article  Google Scholar 

  • Siewert GE, Thomas JR (1984) Neutron transport calculations in cylindrical geometry. Nucl Sci Eng 87(2):107–112

    Google Scholar 

  • Siewert GE, Thomas JR (1985) Radiative transfer calculations in spheres and cylinders. J Quant Spectrosc Radiat Transfer 34(1):59–64

    Article  Google Scholar 

  • Silant’ev NA (2006) Polarization of radiation scattered in magnetized turbulent envelopes. Astron Astrophys 449(2):597–608

    Article  Google Scholar 

  • Simonneau E (1976) Radiative transfer in atmospheres with spherical symmetry. J Quant Spectrosc Radiat Transfer 16(9):741–753

    Article  Google Scholar 

  • Simonneau E (1978) Radiative transfer in atmospheres with spherical symmetry. II. The conservative Milne problem. J Quant Spectrosc Radiat Transfer 19(5):439–450

    Article  Google Scholar 

  • Simonneau E (1980) Radiative transfer in atmospheres with spherical symmetry. IV. The non-conservative problem. J Quant Spectrosc Radiat Transfer 23(1):73–81

    Article  Google Scholar 

  • Smith MG (1965) The isotropic scattering of radiation from a point source in a finite spherical atmosphere. Proc Camb Phil Soc 61(4):923–937

    Article  Google Scholar 

  • Smoktii OI (1986) Modelling of radiation fields in problems of space spectrophotometry. Izd. Nauka, Leningrad

    Google Scholar 

  • Smoktii OI, Anikonov AS (2008) Light scattering in media of large optical thickness. Izd. Nauka, St. Petersburg

    Google Scholar 

  • Sobolev VV (1943) The approximation solution to the problem of light scattering in a medium with an arbitrary phase function. Astron Zh 20(5–6):14–22

    Google Scholar 

  • Sobolev VV (1952) On the theory of the non-stationary radiation field. Astron Zh 29(4):406–414, 29(5):517–525

    Google Scholar 

  • Sobolev VV (1958) Diffusion of radiation in a plane layer. Soviet Physics Doklady 3:541–544

    Google Scholar 

  • Sobolev VV (1963) A treatise on radiative transfer. Van Nostrand, Prinston

    Google Scholar 

  • Sobolev VV (1965) Diffusion on radiation in a nebula of large optical thickness. Kinematics and dynamics of stellar systems and physics of interstellar medium. Izd. Nauka, Alma-Ata, pp 285–291

    Google Scholar 

  • Sobolev VV (1972) Light scattering in a homogeneous sphere. Astrophysics 8(2):117–127

    Article  Google Scholar 

  • Sobolev VV (1975) Light scattering in planetary atmospheres. Pergamon Press, Oxford

    Google Scholar 

  • Sobolev VV (1983) Scattering of light in a spherical shell and a sphere. Soviet Phys Dokl 28:908–911

    Google Scholar 

  • Sobolev VV (1984) Integral relations and asymptotic expressions in the theory of radiative transfer. Astrophysics 20(1):79–85

    Article  Google Scholar 

  • Takenti M (1979) On Unno-Kondo’s generalized Eddington approximation in extended atmospheres. Publ Astron Soc Jpn 31(1):199–202

    Google Scholar 

  • Taylor PA (1927) The equilibrium of the calcium chromosphere. Mon Notic Roy Astron Soc 87(8):605–616

    Article  Google Scholar 

  • Tsujita J (1967) Diffuse reflection and transmission by an inhomogeneous infinite cylindrical region. Publ Astron Soc Jpn 19(3):468–475

    Google Scholar 

  • Tsujita J (1969) The invariant imbedding equation for the dissipation function of an infinite inhomogeneous cylindrical shell. Publ Astron Soc Jpn 21(1):15–20

    Google Scholar 

  • Ueno S, Kagiwada H, Kalaba R (1971) Radiative transfer in spherical shell atmosphere with radial symmetry. J Math Phys 12(7):1279–1286

    Article  Google Scholar 

  • Ueno S (1974) On the resolvent of Milne’s integral equation for a spherical isotropically-scattering medium. J Quant Spectrosc Radiat Transfer 14(4):245–249

    Article  Google Scholar 

  • Unno W, Kondo M (1976) The Eddington approximation generalized for radiative transfer in spherically symmetric systems. I. Basic method. Publ Astron Soc Jpn 28(2):347–354

    Google Scholar 

  • Unno W, Kondo M (1977) The Eddington approximation generalized for radiative transfer in spherically symmetric systems. II. Nongrey extended dust-shell models. Publ Astron Soc Jpn 29(4):693–710

    Google Scholar 

  • Van de Hulst HC (1980) Multiple light scattering. Tables, Formulas, and applications, vols. 1, 2. Academic Press, New York

    Google Scholar 

  • Van de Hulst HC (1987) Radiative transfer in a spherical dust cloud. I. Exact results for isotropic scattering. Astron Astrophys 173(1):115–123

    Google Scholar 

  • Van de Hulst HC (1988) Radiative transfer in a spherical dust cloud. II. Asymptotic form of the reflection function for isotropic scattering. Astron Astrophys 207(1):182–193

    Google Scholar 

  • Van de Hulst HC (1994) Radiative transfer by a homogeneous spherical cloud. Trudy Astron Obs St Petersburg Gos Univ 44:131–153

    Google Scholar 

  • Viik T (1974a) Radiative transfer in homogeneous spherical shell atmospheres. Publ Tartu Astrophys Obs 42:3–21

    Google Scholar 

  • Viik T (1974b) A modified regional averaging method. Publ Tartu Astrophys Obs 42:22–37

    Google Scholar 

  • Viik T (1974c) A modified regional averaging method. II. Comparision with the P-3 approximation. Publ Tartu Astrophys Obs 42:281–292

    Google Scholar 

  • Vladimirov VS (1963) Mathematical problems in the one-velocity theory of particle transport. Atomic Energy of Canada Limited, Chalk River

    Google Scholar 

  • Vladimirov VS (1976) Distributions in mathematical physics. Izd. Nauka, Moscow

    Google Scholar 

  • Weinberg A, Wigner E (1958) The physical theory of neutron chain reactors. University of Chicago Press, Chicago

    Google Scholar 

  • Wick GC (1943) Über ebene Diffusionsprobleme. Zeitschr Phys 121(11–12):702–718

    Article  Google Scholar 

  • Wilson SJ, Sen KK (1964) Modified spherical harmonic method and spherical geometry. I. Diffusion problem. Ann Astrophys 27(6):654–659

    Google Scholar 

  • Wilson SJ, Sen KK (1965a) Modified spherical harmonic method and spherical geometry. II. Transfer problem in spherically symmetric finite stellar atmosphere. Ann Astrophys 28(2):348–352

    Google Scholar 

  • Wilson SJ, Sen KK (1965b) Modified spherical harmonic method and spherical geometry. III. Transfer problem in spherically symmetric finite shell of planetary nebulae. Ann Astrophys 28(5):855–859

    Google Scholar 

  • Wilson SJ, Tung CT, Sen KK (1972) The Eddington factor for radiative transfer in spherical geometry. Mon Notic Roy Astron Soc 160(4):349–353

    Article  Google Scholar 

  • Wilson SJ, Sen KK (1973a) On the resolvent kernel for the transfer problem in an homogeneous sphere. J Quant Spectrosc Radiat Transfer 13(1):83–85

    Article  Google Scholar 

  • Wilson SJ, Sen KK (1973b) Probabilistic model for the resolvent kernel in diffusion problems in spherical-shell media. J Quant Spectrosc Radiat Transfer 13(3):255–266

    Article  Google Scholar 

  • Wilson SJ, Sen KK (1973c) Probabilistic model for the resolvent kernel in non-coherent scattering sphericalshell. J Quant Spectrosc Radiat Transfer 13(8):755–763

    Article  Google Scholar 

  • Wilson SJ, Wan FS, Sen KK (1980) On the moment method for radiative transfer in spherical dust shells with a core. Astrophys Space Sci 67(1):99–108

    Article  Google Scholar 

  • Wing GM (1962) An introduction to transport theory. Wiley, New York

    Google Scholar 

  • Yanovitski EG (1997) Light scattering in inhomogeneous atmospheres. Springer, New York

    Book  Google Scholar 

  • Yengibarian NB (1972) The scattering of light in a sphere with arbitrary source distribution. Astrofizika 8(1):149–153

    Google Scholar 

  • Yorke HW (1986) Numerical solution of the equation of radiative transfer in spherical geometry. Ann Astrophys 86(3):286–297

    Google Scholar 

  • Yvon J (1957) La diffusion mactroscopique des neutrons: une methode d’approximation. J Nucl Energy 4(3):305–318

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kolesov .

Editor information

Editors and Affiliations

Appendices

Appendix A: The Results of Calculation by Formula (33)

The radiation intensity I(τμ) in an infinite homogeneous dusty nebula surrounding a star, was calculated according to the formula (39) with values of λ = 0.9 and λ = 1 for three phase functions: A − x(γ) = 1, B − x(γ) = 3/4(1 + cos2 γ), and C—x(γ) = 1 + cosγ + P 2(cosγ). The calculations have been based that \( \frac{{L\alpha^{2} }}{{8\pi^{2} }} = 1 \). The calculation results are shown in Table 1 (the case λ = 0.9) and in Table 2 (the case λ = 1) for different values of the arguments τ and μ. The values of I(τµ) if τ > 10 in case B (the Rayleigh phase function) in Table 2 is not shown as within the accepted accuracy they coincide with the corresponding values for isotropic scattering.

Table 1 Values of I(τμ) for λ = 0.9
Table 2 Values of I(τμ) for λ = 1

When λ < 1, the radiation intensity decreases rapidly with increasing τ. This is because when τ ≫1 the values of I(τμ) is proportional to \( \frac{{{\text{e}}^{ - k\tau } }}{\tau } \). Differences in the rate of reduction of I(τμ) with increasing τ for different scattering phase functions caused mainly by the difference in the values of k (if λ = 0.9 for phase functions A, B, C the values of k are, respectively, 0.5254; 0.5232; 0.4361). When λ = 1, k = 0, the decrease of the values of I(τμ) with increasing τ is much slower.

The values I(τμ) increase which increasing μ. It is especially noticeable when λ ≈ 1. The radiation intensity becomes infinite in the direction of radiation entered a given point of medium directly from the star (when μ = 1).

Appendix B: The Exactness of Approximate Expressions for the Mean Radiation Intensity and the Radiation Flux

The nonstationary radiation field in a one-dimensional homogeneous infinite medium with a point energy source is calculated in the cases A (t 1 ≫ t 2) and B (t 2 ≫ t 1). Obtained exact values for the mean radiation intensity \( J_{A} (\tau ,u) \), \( J_{B} (\tau ,u) \) and the radiation flux \( H_{A} (\tau ,u) \), \( H_{B} (\tau ,u) \) are compared with corresponding values \( J_{D} (\tau ,u) \) and \( H_{D} (\tau ,u) \) founded in the diffusion approximation. Results of the comparison are shown in Tables 3, 4, and 5.

Table 3 Ratios of J A /J D and H A /H D for λ = 1
Table 4 Values of \( J_{A} (\tau ,u) \),\( J_{D} (\tau ,u) \), \( J_{B} (\tau ,u) \), for λ = 0.5
Table 5 Values of \( H_{A} (\tau ,u) \), \( H_{D} (\tau ,u) \), \( H_{B} (\tau ,u) \), for λ = 0.5

Consider first the case A. In the case of pure scattering (i.e., λ = 1), asymptotic expression (197) and (198) when и ≫ 1 just coincide with formulas (199) and (200) for \( J_{D} (\tau ,u) \) and \( H_{D} (\tau ,u) \). Exact and approximate values of J and H are quite close to each other (see Table 3). So we can assume that in the case A when λ = 1, the application of diffusion approximation will not lead to large errors.

Another situation that occurs is in the presence of true absorption, i.e., when λ < 1. The exact values of \( J_{A} (\tau ,u) \) and \( H_{A} (\tau ,u) \) may differ significantly from their asymptotic values. Asymptotic expressions (197) and (198) also differ from expressions (199) and (200). The radio J A /J D may differ significantly from unity.

Addressing the case B, we first of all note that in this case always и ≫ τ, e.g. \( J_{B} (\tau ,u) = 0 \) and \( H_{B} (\tau ,u) = 0 \) when и < τ. But the diffusion equation does not take into account the finite speed of light. Taking into account only и > τ, approximately the same results, as in case A, can be obtained by exact and approximate expressions. When λ = 1, an asymptotic expressions for \( J_{B} (\tau ,u) \) and \( H_{B} (\tau ,u) \) coincides with expressions (199) and (200) for \( J_{D} (\tau ,u) \) and \( H_{D} (\tau ,u) \).

The ratio J B /J D and H B /H D greatly depends on λ (see Tables 4 and 5).

From the above it is concluded that the replacement of the radiation transfer equation to the diffusion equation should give satisfactory results when λ ≈ 1 but may lead to significant errors when λ < 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolesov, A., Kropacheva, N. (2016). Radiative Transfer in Spherically and Cylindrically Symmetric Media. In: Kokhanovsky, A. (eds) Light Scattering Reviews, Volume 11. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49538-4_4

Download citation

Publish with us

Policies and ethics