Skip to main content

Community Radiative Transfer Model for Air Quality Studies

  • Chapter
  • First Online:
Light Scattering Reviews, Volume 11

Part of the book series: Springer Praxis Books ((PRAXIS))

Abstract

This chapter presented the latest Community Radiative Transfer Model (CRTM), which is applicable for passive microwave, infrared and visible sensors. The CRTM has been used in operational radiance assimilations in support of weather forecasting and in the generation of satellite products. In the paper we discussed the CRTM applications to assimilate aerosol optical depths derived from satellite measurements. The assimilation improved the analysis of aerosol mass concentrations, and enhanced the forecast skill for aerosol mass concentrations. We also introduced a retrieval algorithm and a retrieval product of carbon monoxide by using satellite measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarado MJ, Wang C, Prinn RG (2009) Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 2. Three-dimensional Eulerian studies. J Geophys Res 114:D09307. doi:10.1029/2008JD011186

    Google Scholar 

  • Anderson DC, Loughner CP, Weinheimer A, Diskin G, Canty TP, Salawitch RJ, Worden H, Fried A, Mikoviny T, Wisthaler A, Dickerson RR (2014) Measured and modeled CO and NOy in DISCOVER-AQ: an evaluation of emissions and chemistry over the eastern US. Atmos Environ 96:78–87

    Article  Google Scholar 

  • Baldridge AM, Hook SJC, Grove I, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113:711–715. doi:10.1016/j.rse.2008.11.007

    Article  Google Scholar 

  • Benedetti A et al (2009) Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation. J Geophys Res 114:D13205. doi:10.1029/2008JD011115

    Article  Google Scholar 

  • Benedetti A, Reid JS, Colarco PR (2011) International cooperative for aerosol prediction (ICAP) workshop on aerosol forecast verification. Bull Am Meteor Soc 92:ES48–ES53. doi:10.1175/BAMS-D-11-00105.1

    Google Scholar 

  • Bian H, Chin M, Kawa SR, Yu H, Diehl T (2010) Multi-scale carbon monoxide and aerosol correlations from MOPITT and MODIS satellite measurements and GOCART model: implication for their emissions and atmospheric evolutions. J Geophys Res 115:D07302. doi:10.1029/2009JD012781

    Article  Google Scholar 

  • Binkowski FS, Roselle SJ (2003) Models-3 community multiscale air quality (CMAQ) model aerosol component, 1 model description. J Geophys Res 108:4183. doi:10.1029/2001JD001409

    Article  Google Scholar 

  • Boukabara S, Weng F, Liu Q (2007) Passive microwave remote sensing of extreme weather events using NOAA-18 AMSUA and MHS. IEEE Geosci Remote Sens 45:2228–2246

    Article  Google Scholar 

  • Buchard V, da Silva A, Colarco P, Darmenov A, Govindaraju R, Spurr R (2014) Using OMI aerosol index and aerosol absorption optical depth to evaluate the NASA MERRA aerosol reanalysis. Atmos Chem Phys Discuss 14:32177–32231

    Article  Google Scholar 

  • Byun DW, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 community multiscale air quality (CMAQ) modeling system. Appl Mech Rev 59:51–77

    Article  Google Scholar 

  • Byun DW, Hanna A, Coats CJ, Hwang D (1995a) Models-3 air quality model prototype science and computational concept development. Transactions of air & waste management association specialty conference on regional photochemical measurement and modeling studies, San Diego, CA, pp 197–212, 8–12 Nov 1993

    Google Scholar 

  • Byun DW, Coats CJ, Hwang D, Fine S, Odman T, Hanna A, Galluppi KJ (1995b) Prototyping and implementation of multiscale air quality models for high performance computing. Mission earth symposium, Phoenix, AZ, pp 527–532, 9–13 Apr 1993

    Google Scholar 

  • Byun DW, Dabdub D, Fine S, Hanna AF, Mathur R, Odman MT, Russell A, Segall EJ, Seinfeld JH, Steenkiste P, Young J (1996) Emerging air quality modeling technologies for high performance computing and communication environments. In: Gryning SE, Schiermeier F (eds) Air pollution modeling and its application XI, pp 491–502

    Google Scholar 

  • Byun DW, Ching JKS, Novak J, Young J (1998) Development and implementation of the EPA models-3 initial operating version: community multi-scale air quality (CMAQ) model: twenty-second NATO/CCMS international technical meeting on air pollution modelling and its application. In: Gryning SE, Chaumerliac N (eds) Air pollution modeling and its application XII. Plenum Publishing Corporation, Berlin, pp 357–368

    Google Scholar 

  • Cao C, Xiong J, Blonski S, Liu Q, Uprety S, Shao X, Bai Y, Weng F (2013) Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J Geophys Res Atmos 118 (2013) doi:10.1002/2013JD020418

    Google Scholar 

  • Chai T, Kim H-C, Lee P, Tong D, Pan L, Tang Y, Huang J, McQueen J, Tsidulko M, Stajner I (2013) Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using air quality system ozone and NO2 measurements. Geosci Model Dev 6:1831–1850. doi:10.5194/gmd-6-1831-2013

    Google Scholar 

  • Chen Y, Weng F, Han Y, Liu Q (2008) Validation of the community radiative transfer model (CRTM) by using cloudsat data. J Geophys Res 113:D00A03. doi:10.1029/2007JD009561

  • Chen Y, Han Y, Weng F (2012) Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR. J Geophys Res 117:D06206. doi:10.1029/2011JD016656

    Google Scholar 

  • Chin M, Savoie DL, Huebert BJ, Bandy AR, Thornton DC, Bates TS, Quinn PK, Saltzman ES, De Bruyn WJ (2000) Atmospheric sulfur cycle in the global model GOCART: Comparison with field observations and regional budgets. J Geophys Res 105:24689–24712

    Article  Google Scholar 

  • Chin M, Ginoux P, Kinne S, Torres O, Holben BN, Duncan BN, Martin RV, Logan JA, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements. J Atmos Sci 59:461–483

    Article  Google Scholar 

  • Chin M, Ginoux P, Lucchesi R, Huebert B, Weber R, Anderson T, Masonis S, Blomquist B, Bandy A, Thornton D (2003) A global aerosol model forecast for the ACE-Asia field experiment. J Geophys Res 108:8654. doi:10.1029/2003JD003642

    Article  Google Scholar 

  • Chin M, Chu DA, Levy R, Remer LA, Kaufman YJ, Holben BN, Eck T, Ginoux P (2004) Aerosol distribution in the northern hemisphere during ACE-Asia: results from global model, satellite observations, and sunphotometer measurements. J Geophy Res 109:D23S90. doi:10.1029/2004JD004829

  • Chin M, Diehl T, Ginoux P, Malm W (2007) Intercontinental transport of pollution and dust aerosols: implications for regional air quality. Atmos Chem Phys 7:5501–5517

    Article  Google Scholar 

  • Chin M, Diehl T, Dubovik O, Eck TF, Holben BN, Sinyuk A, Streets DG (2009) Light absorption by pollution, dust and biomass burning aerosols: a global model study and evaluation with AERONET data. Ann Geophys 27:3439–3464

    Article  Google Scholar 

  • Ching JKS, Byun DW, Hanna A, Odman T, Mathur R, Jang C, McHenry J, Galluppi K (1995) Design requirements for multiscale air quality models. Mission earth symposium, Phoenix, AZ, pp 532–538, 9–13 Apr 1995

    Google Scholar 

  • Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244. doi:10.1016/j.jqsrt.2004.05.058

    Article  Google Scholar 

  • Coats CJ, Hanna AH, Hwang D, Byun DW (1995) Model engineering concepts for air quality models in an integrated environmental modeling system. Transactions of air & waste management association specialty conference on regional photochemical measurement and modeling studies, San Deigo, CA, pp 213–223, 8–12 Nov 1993

    Google Scholar 

  • Colarco P, da Silva A, Chin M, Diehl T (2010) Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J Geophy Res 115:D14207. doi:10.1029/2009JD012820

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Eaton BE, Khattatov BV, Lamarque J-F (2001) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J Geophys Res 106:7313–7336. doi:10.1029/2000JD900507

    Article  Google Scholar 

  • Cooke WF, Liousse C, Cachier H, Feichter J (1999) Construction of a 1o x 1o fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res 104:22137–22162

    Article  Google Scholar 

  • Courtier P, Thépaut J-N, Hollingsworth J (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1387. doi:10.1002/qj.49712051912

    Article  Google Scholar 

  • d’Almeida GA (1991) Atmospheric aerosols, A. Deepak Publishing, Hampton

    Google Scholar 

  • Darmenov A, da Silva AM (2013) The quick fire emissions dataset (QFED)—documentation of versions 2.1, 2.2 and 2.4, NASA technical report series on global modeling and data assimilation. NASA TM-2013-104606, vol 32, pp 1–183

    Google Scholar 

  • Davidson PM, Seaman N, Schere K, Wayland RA, Hayes JL, Carey KF (2004) National air quality forecasting capability: first steps toward implementation. In: Proceedings of sixth conference on atmospheric chemistry, American Meteorological Society, Seattle, WA (Paper J2.10)

    Google Scholar 

  • Ding S, Yang P, Weng F, Liu Q, Han Y, van Delst P, Li J, Baum B (2011) Validation of the community radiative transfer model. J Q S Spectrosc Radiat Transf 112:1050–1064

    Google Scholar 

  • Djalalova IL, Monache D, Wilczak J (2015) PM2.5 analog forecast and Kalman filter post-processing for the community multiscale air quality (CMAQ) model. Atm Envir 108:76–87

    Article  Google Scholar 

  • Draxler RR, Ginoux P, Stein AF (2010) An empirically derived emission algorithm for wind blown dust. J Geophys Res 115. doi:10.1029/2009JD013167

  • Duncan BN, Martin RV, Staudt AC, Yevich R, Logan JA (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res 108:4100. doi:10.1029/2002JD002378

    Article  Google Scholar 

  • Eder B, Kang D, Trivikrama Rao S, Mathur R, Yu S, Otte T, Schere K, Wayland R, Jackson S, Davidson P, McQueen J, Bridgers G (2010) Using national air quality forecast guidance to develop local air quality index forecasts. Bull Am Meteor Soc 91:313–326. doi:10.1175/2009BAMS2734.1

    Google Scholar 

  • Evans KF, Stephens GL (1991) A new polarized atmospheric radiative transfer model. J Quant Spectrosc Radiat Transfer 46:413–423

    Article  Google Scholar 

  • Fischer J, Grassl H (1984) Radiative transfer in an atmospheric-ocean system: an azimuthally depedent matrix operator approach. Appl Opt 23:1032–1039

    Article  Google Scholar 

  • Gambacorta A, Barnet C, Wolf W, King T, Maddy E, Strow L, Xiong X, Nalli N, Goldberg M (2014) An experiment using high resolution NPP CrIS measurements for atmospheric trace gases: carbon monoxide retrievals impact study. IEEE Geosci Remote Sens Lett 11:1639–1643

    Article  Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero J, Holben B, Dubovik O, Lin S-J (2001) Sources and global distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20273

    Article  Google Scholar 

  • Ginoux P, Prospero J, Torres O, Chin M (2004) Long-term simulation of dust distribution with the GOCART model: correlation with the North Atlantic oscillation, environ. Model Softw 19:113–128

    Google Scholar 

  • Goldberg M, Qu L, McMillin Y, Wolf W, Zhou L, Divakarla M (2003) Airs near-real-time products and algorithms in support of operational weather prediction. IEEE Trans Geosci Remote Sens 41:379–389

    Article  Google Scholar 

  • Guenther AC, Hewitt N, Erickson D, Fall R, Geron C, Graedel T, Harley P, Graedel L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  Google Scholar 

  • Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-mm wavelength region. Appl Opt 12:555–563

    Article  Google Scholar 

  • Han Y, van Delst P, Liu Q, Weng F, Yan B, Treadon R, Derber J (2006) Community radiative transfer model (CRTM)—Version 1. NOAA NESDIS Technical Report 122

    Google Scholar 

  • Han Y, Weng F, Liu Q, van Delst P (2007a) A fast radiative transfer model for SSMIS upper atmosphere sounding channel. J Geophys Res 112:D11121. doi:10.1029/2006JD008208

    Article  Google Scholar 

  • Han Y, Weng F, Liu Q, van Delst P (2007b) A fast radiative transfer model for SSMIS upper atmosphere sounding channel. J Geophys Res 112:D11121. doi:10.1029/2006JD008208

    Article  Google Scholar 

  • Hansen JE, Travis LD (1974) Light scattering in planetary atmospheres. Space Sci Rev 16(1973):527–610

    Article  Google Scholar 

  • Heidinger AK, Christopher O, Bennartz R, Greenwald T (2006) The successive-order-of-interaction radiative transfer model. Part I: model development. J Appl Meteorol 45:1388–1402

    Article  Google Scholar 

  • Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Met Soc 79:831–844

    Article  Google Scholar 

  • Hu YX, Wielicki B, Lin B, Gibson G, Tsay SC, Stamnes K, Wong T (2000) δ-Fit: a fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting. JQSRT 65:681–690

    Article  Google Scholar 

  • Ignatov A, Sapper J, Laszlo I, Nalli N, Kidwell K (2004) Operational aerosol observations (AEROBS) from AVHRR/3 on board NOAA-KLM satellites. J Atmos Oceanic Technol 21(2004):3–26. doi:10.1175/1520-0426021<0003:OAOAFO>2.0.CO;2

    Article  Google Scholar 

  • Janjic ZI (2003) A nonhydrostatic model based on a new approach. Meteorol Atmos Phys 82:271–285. doi:10.1007/s00703-001-0587-6

    Article  Google Scholar 

  • Kim D, Chin M, Bian H, Tan Q, Brown ME, Zheng T, You R, Diehl T, Ginoux P, Kucsera T (2013) The effect of the dynamic surface bareness to dust source function, emission, and distribution. J Geophys Res 118:1–16. doi:10.1029/2012JD017907

    Google Scholar 

  • Kopp TJ, Thomas W, Heidinger AK, Botambekov D, Frey RA, Hutchison KD, Iisager BD, Brueske K, Reed B (2014) The VIIRS cloud mask: progress in the first year of S-NPP toward a common cloud detection scheme. J Geophys Res Atmos 119:2441–2456. doi:10.1002/2013JD020458

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Washington R, Todd MC, Rudich Y, Vanderlei Martins J, Resenfeld D (2006) The Bodele depressions: a single spot in the Sahara that provides most of the mineral dust to the Amazon forecast. Environ Res Lett 1:014005 (5pp). doi:10.1088/1748-9326/1/1/014005

    Google Scholar 

  • Larrabee Strow L, Hannon SE, De Souza-Machado S, Motteler HE, Tobin E (2003) An overview of the AIRS radiative transfer model. IEEE Trans Geosci Remote Sens 41:303–313

    Google Scholar 

  • Lee P, Liu Y (2014) Preliminary evaluation of a regional atmospheric chemical data assimilation system environmental surveillance. Int J Environ Res Public Health 11:12795–12816

    Article  Google Scholar 

  • Liang S, Zhong B, Fang H (2006) Improved estimation of aerosol optical depth from MODIS imagery over land surfaces. Remote Sens Environ 104:416–425

    Article  Google Scholar 

  • Liang X-M, Ignatov A, Kihai Y (2009) Implementation of the community radiative transfer model in advanced clear-sky processor for oceans and validation against nighttime AVHRR radiances. J Geophys Res 114:D06112. doi:10.1029/2008JD010960

    Article  Google Scholar 

  • Liou KN (2002) An introduction to atmospheric radiation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, Hinghan, MA, pp 113–127

    Google Scholar 

  • Liu G (2008) A database of microwave single-scattering properties for nonspherical ice particles. Bull Am Meteor Soc. 89:1563–1570. doi:10.1175/2008BAMS2486.1

    Article  Google Scholar 

  • Liu Q, Boukabara S (2014) Community radiation transfer model (CRTM) applications in supporting the Suomi national polar-orbiting partnership (SNPP) mission validation and verification. Remote Sen Environ 140:744–754

    Article  Google Scholar 

  • Liu Q, Ruprecht E (1996) A radiative transfer model: matrix operator method. Appl Opt 35:4229–4237

    Article  Google Scholar 

  • Liu Q, Simmer C (1996) Polarization and intensity in microwave radiative transfer model. Contrib Atmos Phys 69:535–545

    Google Scholar 

  • Liu Q, Weng F (2006) Advanced doubling-adding method for radiative transfer in planetary atmospheres. J Atmos Sci 63:3459–3465

    Article  Google Scholar 

  • Liu Q, Weng F (2009) Recent stratospheric temperature observed from satellite measurements. SOLA 5:53–56. doi:10.2151/sola.2009-014

    Article  Google Scholar 

  • Liu Q, Weng F (2013) Using advanced matrix operator (AMOM) in community radiative transfer. IEEE JSTAR 6:1211–1212. doi:10.1109/JSTARS.2013.2247026

    Google Scholar 

  • Liu Q, Xiao S (2014) Effects of spectral resolution and signal-to-noise ratio of hyperspectral sensors on retrieving atmospheric parameters. Opt Lett 39:60–63

    Article  Google Scholar 

  • Liu Z, Vaughan M, Winker D, Kittaka C, Getzewich B, Kuehn R, Omar A, Powell K, Trepte C, Hostetler C (2009a) The CALIPSO lidar cloud and aerosol discrimination: version 2 algorithm and initial assessment of performance. J Atmos Oceanic Technol 26:1198–1213

    Article  Google Scholar 

  • Liu X, Zhou DK, Larar AM, Smith WL, Schluessel P, Newman SM, Taylor JP, Wu W (2009b) Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmos Chem Phys 9:9121–9142. doi:10.5194/acp-9-9121-2009

    Article  Google Scholar 

  • Liu Z, Liu Q, Lin HC, Schwartz CS, Lee YH, Wang T (2011a) Three-dimensional variational assimilation of MODIS aerosol optical depth: implementation and application to a dust storm over East Asia. J Geophys Res 116:D23206. doi:10.1029/2011JD016159

    Google Scholar 

  • Liu Q, Weng F, English S (2011b) An improved fast microwave water emissivity model. IEEE TGRS 49:1238–1250

    Google Scholar 

  • Liu Q, Li C, Xue Y (2013) Sensor-based clear and cloud radiance calculations in the community radiative transfer model. Appl Opt 52:4981–4990

    Article  Google Scholar 

  • Liu H, Remer LA, Huang J, Huang H-C, Kondragunta S, Laszlo I, Oo M, Jackson JM (2014) Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. J Geophys Res Atmos 119(2014):3942–3962. doi:10.1002/2013JD020360

    Article  Google Scholar 

  • Lu S, Huang H-C, Hou Y-T, Tang Y, McQueen J, da Silva A, Chin M, Joseph E, Stockwell W (2010) Development of NCEP global aerosol forecasting system: an overview and its application for improving weather and air quality forecasts. In: NATO science for peace and security series: air pollution modelling and its application vol XX, pp 451–454. doi:10.1007/978-90-481-3812-8, 2010

    Google Scholar 

  • Lu S, da Silva A, Chin M, Wang J, Moorthi S, Juang H, Chuang HY, Tang Y, Jones L, Iredell M, McQueen J (2013) The NEMS GFS aerosol component: NCEP’s global aerosol forecast system, NCEP Office Note 472. Available at: http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on472.pdf, Washington D.C., 26 pp

  • Lu S, Iredell M, Wang J, Moorthi S, McQueen J, Chuang H-Y, Hou Y-T, Juang H, Yang W, da Silva A, Chin M (2013) The NEMS GFS aerosol component: NCEP’s global aerosol forecast system, NCEP Office Note 472, 26 pp. Available at: http://www.lib.ncep.noaa.gov/ncepofficenotes/files/on472.pdf, Washington D.C.

  • McMillin LM, Crone JJ, Goldberg MD, Kleespies TJ (1995) Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles. Appl Opt 34:6269–6274

    Article  Google Scholar 

  • Mishchenko MI, Lacis AA, Travis LD (1994) Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres. J Quant Spectrosc Radiat Transfer 51:491–510

    Article  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles. University Press, Cambridge

    Google Scholar 

  • Olivier JG, Bouwman AF, van der Maas CW, Berdowski JJ (1994) Emission database for global atmospheric research (Edgar). Environ Monit Assess 31:93–106. doi:10.1007/BF00547184

    Article  Google Scholar 

  • Otte TL, Pouliot G, Pleim JE, Young JO, Schere KL, Wong DC, Lee PCS, Tsidulko M, McQueen JT, Davidson P, Mathur R, Chuang HY, DiMego G, Seaman NL (2005) Linking the eta model with the community multiscale air quality (CMAQ) modeling system to build a national air quality forecasting system. Weather Forecast 20:367–384

    Article  Google Scholar 

  • Pan L, Tong D, Lee P, Kim H-C, Chai T (2014) Assessment of NOx and O3 forecasting performances in the U.S. national air quality forecasting capability before and after the 2012 major emissions updates. Atmos Envir 95:610–619. doi:10.1016/j.atmosenv.2014.06.020

    Google Scholar 

  • Plass GN, Kattawar W, Catchings FE (1973) Matrix operator theory of radiative transfer, 1: rayleigh scattering. Appl Opt 12:314–329

    Article  Google Scholar 

  • Pommier M, Law KS, Clerbaux C, Turquety S, Hurtmans D, Hadji-Lazaro J, Coheur P-F, Schlager H, Ancellet G, Paris J-D, Nédélec P, Diskin GS, Podolske JR, Holloway JS, Bernath P (2010) IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns. Atmos Chem Phys 10:10655–10678. doi:10.5194/acp-10-10655-2010

    Article  Google Scholar 

  • Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact 14:1–22. doi:10.1175/2009EI288.1

    Article  Google Scholar 

  • Reid JS, Benedetti A, Colarco PR, Hansen JA (2011) International operational aerosol observability workshop. Bull Am Meteor Soc 92:ES21–ES24. doi: 10.1175/2010BAMS3183.1

    Google Scholar 

  • Remer LA et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973. doi:10.1175/JAS3385.1

    Article  Google Scholar 

  • Rolph GD, Draxler RR, Stein AF, Taylor A, Ruminski MG, Kondragunta S, Zeng J, Huang H, Manikin G, McQueen JT, Davidson PM (2009) Description and verification of the NOAA smoke forecasting system: the 2007 fire season. Weather Forecast 24:361–378

    Google Scholar 

  • Rosenkranz PW (2001) Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. IEEE Trans Geosci Remote Sens 39:2429–2435

    Article  Google Scholar 

  • Sarwar G, Luecken D, Yarwood G, Whitten G, Carter B (2008) Impact of an updated carbon bond mechanism on air qual-ity using the community multiscale air quality modeling system: preliminary assessment. J Appl Meteorol Clim 47:3–14

    Article  Google Scholar 

  • Saunders RW, Matricardi M, Brunel P (1999) An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart J R Meteorol Soc 125:1407–1425

    Article  Google Scholar 

  • Saunders R, Brunel P, von Engeln A, Bormann N, Strow L, Hannon S, Heilliette S, Liu X, Miskolczi F, Han Y, Masiello G, Moncet JL, Uymin G, Sherlock V, Turner DS (2007) A comparison of radiative transfer models for simulating AIRS radiances. J Geophys Res 112:D01S90. doi:10.1029/2006JD007088

  • Schmetz J, Raschke E (1981) An approximate computation of infrared radiative fluxes in a cloudy atmosphere. Pure appl Geophys 119:248–258

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  • Sessions WR, Reid JS, Benedetti A, Colarco PR, da Silva A, Lu S, Sekiyama T, Tanaka TY, Baldasano JM, Basart S, Brooks ME, Eck TF, Iredell M, Hansen JA, Jorba OC, Juang H-M, Lynch P, Morcrette J-J, Moorthi S, Mulcahy J, Pradhan Y, Razinger M, Sampson CB, Wang J, Westphal DL (2015) Development towards a global operational aerosol consensus: basic climatological characteristics of the international cooperative for aerosol prediction multi-model ensemble (ICAP-MME). Atmos Chem Phys 15:355–362. doi:10.5194/acp-15-335-2015

    Google Scholar 

  • Stamnes K, Tsay S-C, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2529

    Article  Google Scholar 

  • Susskind J, Barnet CD, Blaisdell J (2003) Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans Geosci Remote Sens 41:390–409

    Article  Google Scholar 

  • Sutton MA, Mason KE, Sheppard LJ, Sverdrup H, Haeuber R, Hicks WK (eds) (2014) Nitrogen deposition, critical loads and biodiversity. Springer, New York

    Google Scholar 

  • Van de Hulst HC (1963) A new look at multiple scattering, Technical Report. Goddard Institute for Space Studies, NASA, New York

    Google Scholar 

  • Van Delst P, Wu X (2000) A high resolution infrared sea surface emissivity database for satellite applications.In: Technical proceedings of eleventh international ATOVS study conference, Budapest, Hungary, pp 407–411, 20–26 Sept

    Google Scholar 

  • Vogel R, Liu Q, Han Y, Weng F (2011) Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling. J Geophys Res 116:D08105. doi:10.1029/2010JD014679

    Google Scholar 

  • Weng F, Liu Q (2003) Satellite data assimilation in numerical weather prediction models, part I: forward radiative transfer and jocobian modeling in cloudy atmospheres. J Atmos Sci 60:2633–2646

    Article  Google Scholar 

  • Weng F, Yan B, Grody NC (2001) A microwave land emissivity model. J Geophys Res 106:20,115–20,123

    Google Scholar 

  • Wiscombe WJ (1980) Improved Mie scattering algorithms. Appl Opt 19:1505–1509

    Article  Google Scholar 

  • Wiscombe WJ, The Delta-M Method (1957) Rapid yet accurate radiative flux calculations for strongly asymmetric phase function. J Atmos Sci 34:1408–1422

    Google Scholar 

  • Wu W-S, Purser RJ, Parrish DF (2002) Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon Weather Rev 130:2905–2916

    Article  Google Scholar 

  • Wu X, Liu Q, Zeng J, Grotenhuis M, Qian H, Caponi M, Flynn L, Jaross G, Sen B, Buss R et al (2014) Evaluation of the sensor data record from the nadir instruments of the ozone mapping profiler suite (OMPS). J Geophys Res-ATMOS 119:6170–6180

    Google Scholar 

  • Yan B, Weng F, Meng H (2008) Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit. J Geophys Res 113:D19206. doi:10.1029/2007JD009559

    Article  Google Scholar 

  • Yang P, Wei HL, Huang HL, Baum BA, Hu YX, Kattawar GW, Mishchenko MI (2005) Fu, Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl Opt 44:5512–5523

    Article  Google Scholar 

  • Yang K, Simon A, Ge CC, Wang J, Dickerson RR (2014) Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS. Geophys Res Lett 41(2014):4777–4786. doi:10.1002/2014GL060136

    Google Scholar 

  • Zhang X, Kondragunta X, Ram J, Schmidt C, Huang H-C (2011) Near-real-time global biomass burning emissions products from geostationary satellite constellation. J Geophys Res 117:D14201. doi:10.1029/2012JD017459

    Google Scholar 

  • Zhou L, Goldberg M, Barnet C, Cheng Z, Sun F, Wolf W, King T, Liu X, Sun H, Divakarla M (2008) Regression of surface spectral emissivity from hyperspectral instruments. IEEE Trans Geosci Remote Sens 46:328–333

    Article  Google Scholar 

  • Zhou DK, Larar AM, Liu X, Smith WL, Larrabee Strow L, Yang P, Schlüssel P, Calbet X (2011) Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans Geosci Remote Sens 49:1277–1290. doi:10.1109/TGRS.2010.2051036

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanhua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Q., Lu, CH. (2016). Community Radiative Transfer Model for Air Quality Studies. In: Kokhanovsky, A. (eds) Light Scattering Reviews, Volume 11. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49538-4_2

Download citation

Publish with us

Policies and ethics