Advertisement

On Expedited Rating of Data Stores

  • Sumita BarahmandEmail author
  • Shahram Ghandeharizadeh
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9620)

Abstract

To rate a data store is to compute a value that describes the performance of the data store with a database and a workload. A common performance metric of interest is the highest throughput provided by the data store given a pre-specified service level agreement such as 95 % of requests observing a response time faster than 100 ms. This is termed the action rating of the data store. This paper presents a framework consisting of two search techniques with slightly different characteristics to compute the action rating. With both, to expedite the rating process, the framework employs agile data loading techniques and strategies that reduce the duration of conducted experiments. We show these techniques enhance the rating of a data store by one to two orders of magnitude. The rating framework and its optimization techniques are implemented using a social networking benchmark named BG.

Keywords

Data Store System Load Load Time Social Graph Local Search Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amdahl, G.: Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities. In: AFIPS Spring Joint Computer Conference, 30, 483–485 (1967)Google Scholar
  2. 2.
    Amsden, Z., Bronson, N., Cabrera III, G., Chakka, P., Dimov, P., Ding, H., Ferris, J., Giardullo, A., Hoon, J., Kulkarni, S., Lawrence, N., Marchukov, M., Petrov, D., Puzar, L., Venkataramani, V.: TAO: how Facebook serves the social graph. In: SIGMOD Conference (2012)Google Scholar
  3. 3.
    Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.: Benchmarking database systems for social network applications. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013 (2013)Google Scholar
  4. 4.
    Barahmand, S.: Benchmarking Interactive Social Networking Actions, Doctorate thesis, Computer Science Department, USC (2014)Google Scholar
  5. 5.
    Barahmand, S., Ghandeharizadeh, S.: BG: a benchmark to evaluate interactive social networking actions. In: Proceedings of 2013 CIDR, January 2013Google Scholar
  6. 6.
    Barahmand, S., Ghandeharizadeh, S., Yap, J.: A comparison of two physical data designs for interactive social networking actions. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013 (2013)Google Scholar
  7. 7.
    Barahmand, S., Ghandeharizadeh, S.: Expedited rating of data stores using agile data loading techniques. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013, pp. 1637–1642 (2013)Google Scholar
  8. 8.
    Bitton, D., Turbyfill, C., Dewitt, D.J., Systems, B.D.: A systematic approach. In: VLDB, pp. 8–19 (1983)Google Scholar
  9. 9.
    Blasgen, M.W., Gray, J., Mitoma, M.F., Price, T.G.: The convoy phenomenon. Operating Syst. Rev. 13(2), 20–25 (1979)CrossRefGoogle Scholar
  10. 10.
    Carey, M.J., DeWitt, D.J., Naughton, J.F.: The OO7 benchmark. In: SIGMOD Conference, pp. 12–21 (1993)Google Scholar
  11. 11.
    Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39, 12–27 (2011)CrossRefGoogle Scholar
  12. 12.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 4 (2008)CrossRefGoogle Scholar
  13. 13.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with YCSB. In: Cloud Computing, pp. 143–154 (2010)Google Scholar
  14. 14.
    DeWitt, D., Ghandeharizadeh, S., Schneider, D., Bricker, A., Hsiao, H., Rasmussen, R.: The gamma database machine project. IEEE Trans. Knowl. Data Eng. 1(2), 44–62 (1990)CrossRefGoogle Scholar
  15. 15.
    Ghandeharizadeh, S.,Yap, J.: Gumball a race condition prevention technique for cache augmented SQL database management systems. In: Second ACM SIGMOD Workshop on Databases and Social Networks, pp. 1–6 (2012)Google Scholar
  16. 16.
    Gray, J., Reuter, A., Processing, T.: Concepts and Techniques, pp. 677–680. Morgan Kaufmann, Burlington (1993)Google Scholar
  17. 17.
    Gupta, P., Zeldovich, N., Madden, S.: A trigger-based middleware cache for ORMs. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049, pp. 329–349. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4J. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, EDBT 2013, pp. 195–204 (2013)Google Scholar
  19. 19.
    Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.: Shore-MT: a scalable storage manager for the multicore era. In: EDBT, pp. 24–35 (2009)Google Scholar
  20. 20.
    Lomet, D., Li, F.: Improving transaction-time DBMS performance and functionality. In: IEEE 25th International Conference on Data Engineering, pp. 581–591 (2009)Google Scholar
  21. 21.
    Lomet, D., Vagena, Z., Barga, R.: Recovery from “bad" user transactions. In: SIGMOD, pp. 337–346 (2006)Google Scholar
  22. 22.
    MongoDB. Sharded Cluster Administration (2011). http://docs.mongodb.org/manual/administration/sharded-clusters/
  23. 23.
    MongoDB. Using Filesystem Snapshots to Backup and Restore MongoDB Databases (2011). http://docs.mongodb.org/manual/tutorial/backup-databases-with-filesystem-snapshots/
  24. 24.
    Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs, A., Rinaldi, B.: YCSB++: benchmarking and performance debugging advanced features inscalable table stores. In: Cloud Computing, New York, NY, USA. ACM (2011)Google Scholar
  25. 25.
    Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey, Ch., Rollins, E., Oancea, M., Littlefield, K., Menestrina, D., Ellner, S., Cieslewicz, J., Rae, I., Stancescu, T., Apte, H.: F1: a distributed SQL database that scales. Proc. VLDB Endow. 6(11), 1068–1079 (2013)CrossRefGoogle Scholar
  26. 26.
    Stonebraker, M.: Errors in Database Systems, Eventual Consistency, and the CAP Theorem. Communications of the ACM, BLOG@ACM, April 2010Google Scholar
  27. 27.
    Vogels, W.: Eventually Consistent. Commun. ACM 52(1), 40–45 (2009)CrossRefGoogle Scholar
  28. 28.
    Wiener, J., Naughton, J.: Bulk loading into an OODB: a performance study. In: VLDB (1994)Google Scholar
  29. 29.
    Wiener, J., Naughton, J., OODB bulk loading revisited: the partitioned-list approach. In: VLDB, pp. 30–41 (1995)Google Scholar
  30. 30.
    Jung, H., Han, H., Fekete, A.D., Heiser, G., Yeom, H.Y.: A scalable lock manager for multicores. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013 (2013)Google Scholar
  31. 31.
    Kiefer, J.: Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4(3), 502–506 (1953)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
  33. 33.
    Armstrong, T., Ponnekanti, V., Borthakur, D., Callaghan, M.: LinkBench: a database benchmark based on the facebook social graph. In: SIGMOD, pp. 1185–1196 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations