Computing a Geodesic Two-Center of Points in a Simple Polygon

  • Eunjin OhEmail author
  • Sang Won Bae
  • Hee-Kap Ahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


Given a simple polygon P and a set Q of points contained in P, we consider the geodesic k-center problem in which we seek to find k points, called centers, in P to minimize the maximum geodesic distance of any point of Q to its closest center. In this paper, we focus on the case for \(k=2\) and present the first exact algorithm that efficiently computes an optimal 2-center of Q with respect to the geodesic distance in P.


Extreme Point Geodesic Distance Decision Algorithm Combinatorial Structure Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahn, H.K., Barba, L., Bose, P., De Carufel, J.L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. In: Proceedings of the 31st Symposium Computational Geometry (SoCG), vol. 34, pp. 209–223 (2015)Google Scholar
  2. 2.
    Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic voronoi diagram. Discrete Comput. Geom. 9(1), 217–255 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asano, T., Toussaint, G.T.: Computing geodesic center of a simple polygon. Technical report SOCS-85.32, McGill University (1985)Google Scholar
  4. 4.
    Chan, T.M.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dyer, M.E.: On a multidimensional search technique and its application to the euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Proceedings of the 20th ACM Symposium Theory Computing (STOC), pp. 434–444 (1988)Google Scholar
  9. 9.
    Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Halperin, D., Sharir, M., Goldberg, K.Y.: The 2-center problem with obstacles. J. Algorithms 42(1), 109–134 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hwang, R., Lee, R., Chang, R.: The slab dividing approach to solve the Euclidean \(p\)-center problem. Algorithmica 9(1), 1–22 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Megiddo, N.: Linear-time algorithms for linear programming in \(R^3\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Oh, E., De Carufel, J.-L., Ahn, H.-K.: The 2-center problem in a simple polygon. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 307–317. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48971-0_27 CrossRefGoogle Scholar
  14. 14.
    Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(1), 611–626 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue D’Intelligence Artificielle 3, 9–42 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringPOSTECHPohangSouth Korea
  2. 2.Department of Computer ScienceKyonggi UniversitySuwonSouth Korea

Personalised recommendations