Advertisement

Trees and Languages with Periodic Signature

  • Victor MarsaultEmail author
  • Jacques Sakarovitch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)

Abstract

The signature of a labelled tree (and hence of its prefix-closed branch language) is the sequence of the degrees of the nodes of the tree in the breadth-first traversal. In a previous work, we have characterised the signatures of the regular languages. Here, the trees and languages that have the simplest possible signatures, namely the periodic ones, are characterised as the sets of representations of the integers in rational base numeration systems.

References

  1. 1.
    Akiyama, S., Frougny, C., Sakarovitch, J.: Powers of rationals modulo 1 and rational base number systems. Isr. J. Math. 168, 53–91 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words: Christoffel Words and Repetition in Words, vol. 27 of CRM Monograph Series. American Math. Soc., Providence, Rhode Island, USA (2008)Google Scholar
  3. 3.
    Diestel, R.: Graph Theory. Springer, New York (1997)zbMATHGoogle Scholar
  4. 4.
    Frougny, C., Klouda, K.: Rational base number systems for p-adic numbers. RAIRO Theor. Inf. Appl. 46(1), 87–106 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Cambridge University Press, Cambridge (2010)Google Scholar
  6. 6.
    Greibach, S.A.: One counter languages and the IRS condition. J. Comput. Syst. Sci. 10(2), 237–247 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lecomte, P., Rigo, M.: Numeration systems on a regular language. Theor. Comput. Syst. 34, 27–44 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Cambridge University Press, Cambridge (2010)Google Scholar
  9. 9.
    Marsault, V., Sakarovitch, J.: Rhythmic generation of infinite trees, languages (full version). In preparation. Preprint available at arXiv:1403.5190
  10. 10.
    Marsault, V., Sakarovitch, J.: On sets of numbers rationally represented in a rational base number system. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 89–100. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Marsault, V., Sakarovitch, J.: Breadth-first serialisation of trees and rational languages. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 252–259. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LIAFAUniversité Denis DiderotParisFrance
  2. 2.Telecom-ParisTech and CNRSParisFrance

Personalised recommendations