Advertisement

Edge-Editing to a Dense and a Sparse Graph Class

  • Michal Kotrbčík
  • Rastislav Královič
  • Sebastian OrdyniakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)

Abstract

We consider a graph edge-editing problem, where the goal is to transform a given graph G into a disjoint union of two graphs from a pair of given graph classes, investigating what properties of the classes make the problem fixed-parameter tractable. We focus on the case when the first class is dense, i.e. every such graph G has minimum degree at least \(|V(G)| - \delta \) for a constant \(\delta \), and assume that the cost of editing to this class is fixed-parameter tractable parameterized by the cost. Under the assumptions that the second class either has bounded maximum degree, or is edge-monotone, can be defined in \(\text {MSO}_2\), and has bounded treewidth, we prove that the problem is fixed-parameter tractable parameterized by the cost. We also show that the problem is fixed-parameter tractable parameterized by degeneracy if the second class consists of independent sets and Subgraph Isomorphism is fixed-parameter tractable for the input graphs. On the other hand, we prove that parameterization by degeneracy is in general \(\text { W[1]}\)-hard even for editing to cliques and independent sets.

Keywords

Graph modification problems Clique-editing Degeneracy Parameterized complexity Treewidth 

References

  1. 1.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H., Heggernes, P., Lokshtanov, D.: Graph modification problems (Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)Google Scholar
  4. 4.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bova, S., Ganian, R., Szeider, S.: Model checking existential logic on partially ordered sets. In: CSL-LICS. ACM (2014)Google Scholar
  6. 6.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inform. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Damaschke, P., Mogren, O.: Editing simple graphs. J. Graph Algorithms Appl. 18(4), 557–576 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. 41. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  11. 11.
    Fomin, F., Golovach, P.: Long circuits and large euler subgraphs. SIAM J. Discrete Math. 28(2), 878–892 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: STOC. ACM (2014)Google Scholar
  13. 13.
    Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Hüffner, F., Komusiewicz, C., Nichterlein, A.: Editing graphs into few cliques: complexity, approximation, and kernelization schemes. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 410–421. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Kováč, I., Selečéniová, I., Steinová, M.: On the clique editing problem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 469–480. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450 (2013)CrossRefGoogle Scholar
  19. 19.
    Nešetřil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  20. 20.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theor. Comput. Sci. 3(3), 371–384 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp. 253–264. ACM (1978)Google Scholar
  24. 24.
    Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michal Kotrbčík
    • 1
  • Rastislav Královič
    • 2
  • Sebastian Ordyniak
    • 3
    Email author
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Computer ScienceComenius UniversityBratislavaSlovakia
  3. 3.Institute of Information SystemsTU WienViennaAustria

Personalised recommendations