Advertisement

Unshuffling Permutations

  • Samuele GiraudoEmail author
  • Stéphane Vialette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)

Abstract

A permutation is said to be a square if it can be obtained by shuffling two order-isomorphic patterns. The definition is intended to be the natural counterpart to the ordinary shuffle of words and languages. In this paper, we tackle the problem of recognizing square permutations from both the point of view of algebra and algorithms. On the one hand, we present some algebraic and combinatorial properties of the shuffle product of permutations. We follow an unusual line consisting in defining the shuffle of permutations by means of an unshuffling operator, known as a coproduct. This strategy allows to obtain easy proofs for algebraic and combinatorial properties of our shuffle product. We besides exhibit a bijection between square (213, 231)-avoiding permutations and square binary words. On the other hand, by using a pattern avoidance criterion on oriented perfect matchings, we prove that recognizing square permutations is NP-complete.

Keywords

Associative Algebra Combinatorial Property Linear Graph Multiple Occurrence Equivalent Manner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allauzen, C.: Calcul efficace du shuffle de \(k\) mots. Technical report, Institut Gaspard Monge, Université Marne-la-Vallée (2000)Google Scholar
  2. 2.
    Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process. Lett. 65(5), 277–283 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4), 766–776 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Duchamp, G., Hivert, F., Thibon, J.-Y.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Int. J. Algebr. Comput. 12(5), 671–717 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eilenberg, S., Mac Lane, S.: On the groups of \(H(\Pi, n)\). I. Ann. of Math. 58(2), 58:55–58:106 (1953)MathSciNetGoogle Scholar
  7. 7.
    Grinberg, D., Reiner, V.: Hopf Algebras in Combinatorics (2014). arxiv:1409.8356
  8. 8.
    Joni, S.A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93–139 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mansfield, A.: On the computational complexity of a merge recognition problem. Discrete Appl. Math. 5, 119–122 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Henshall, D., Rampersad, N., Shallit, J.: Shuffling and unshuffling (2011). http://arxiv.org/abs/1106.5767
  11. 11.
    Rizzi, R., Vialette, S.: On recognizing words that are squares for the shuffle product. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 235–245. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Simion, R., Schmidt, F.W.: Restricted permutations. Eur. J. Comb. 6(4), 383–406 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org/
  14. 14.
    Spehner, J.-C.: Le calcul rapide des melanges de deux mots. Theoret. Comput. Sci. 47, 181–203 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    van Leeuwen, J., Nivat, M.: Efficient recognition of rational relations. Inf. Process. Lett. 14(1), 34–38 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Vargas. Hopf algebra of permutation pattern functions. In: 26th International Conference on Formal Power Series and Algebraic Combinatorics, pp. 839–850 (2014)Google Scholar
  17. 17.
    Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. J. Comput. Syst. Sci. 28(3), 345–358 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPCMarne-la-ValléeFrance

Personalised recommendations