Random Partial Match in Quad-K-d Trees

  • A. DuchEmail author
  • G. Lau
  • C. Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)


Quad-K-d trees were introduced by Bereczky et al. [3] as a generalization of several well-known hierarchical multidimensional data structures such as K-d trees and quad trees. One of the interesting features of quad-\(K\)-d trees is that they provide a unified framework for the analysis of associative queries in hierarchical multidimensional data structures. In this paper we consider partial match, one of the fundamental associative queries, and prove that the expected cost of a random partial match in a random quad-\(K\)-d tree of size n is of the form \(\varTheta (n^\alpha )\), with \(0 < \alpha < 1\), for several families of quad-\(K\)-d trees including, among others, K-d trees and quad trees. We actually give a general result that applies to any family of quad-\(K\)-d trees where each node has a type that is independent of the type of other nodes. We derive, exploiting Roura’s Continuous Master Theorem, the general equation satisfied by \(\alpha \), in terms of the dimension K, the number of specified coordinates s in the partial match query, and also the additional parameters that characterize each of the families of quad-\(K\)-d trees considered in the paper. We also conduct an experimental study whose results match our theoretical findings; as a by-product we propose an implementation of the partial match search in quad-\(K\)-d trees in full generality.


Shape Function Range Query Recursive Call Partial Match Binary Search Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bentley, J.L., Finkel, R.A.: Quad trees: a data structure for retrieval on composite keys. Acta Informatica 4, 1–9 (1974)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bereczky, N., Duch, A., Németh, K., Roura, S.: Quad-kd trees: a general framework for kd trees and quad trees. Theor. Comput. Sci. 616, 126–140 (2016). doi: 10.1016/j.tcs.2015.12.030 CrossRefzbMATHGoogle Scholar
  4. 4.
    Broutin, N., Neininger, R., Sulzbach, H.: A limit process for partial match queries in random quadtrees and 2-d trees. Ann. Appl. Probab. 23(6), 2560–2603 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chern, H.-H., Hwang, H.-K.: Partial match queries in random \(k\)-d trees. SIAM J. Comput. 35(6), 1440–1466 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chern, H.-H., Hwang, H.-K.: Partial match queries in random quadtrees. SIAM J. Comput. 32(4), 904–915 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cunto, W., Lau, G., Flajolet, P.: Analysis of \(k\)d\(t\)-trees: \(k\)d-trees improved by local reorganisations. In: Dehne, F., Sack, J.R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 24–38. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  8. 8.
    Curien, N., Joseph, A.: Partial match queries in two-dimensional quadtrees: a probabilistic approach. Adv. Appl. Probab. 43(1), 178–194 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Duch, A., Estivill-Castro, V., Martínez, C.: Randomized \(K\)-dimensional binary search trees. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 199–208. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Duch, A., Lau, G., Martínez, C.: On the cost of fixed partial match queries in \(K\)-d trees. Algorithmica (2016). doi: 10.1007/s00453-015-0097-4
  11. 11.
    Flajolet, P., Puech, C.: Partial match retrieval of multidimensional data. J. ACM 33(2), 371–407 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Flajolet, P., Gonnet, G.H., Puech, C., Robson, J.M.: Analytic variations on quadtrees. Algorithmica 10(6), 473–500 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998)CrossRefGoogle Scholar
  14. 14.
    Martínez, C., Panholzer, A., Prodinger, H.: Partial match queries in relaxed multidimensional search trees. Algorithmica 29(1–2), 181–204 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Roura, S.: Improved master theorems for divide-and-conquer recurrences. J. ACM 48(2), 170–205 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentTechnical University of Catalonia – Barcelona TechBarcelona, CataloniaSpain

Personalised recommendations