LATIN 2016: LATIN 2016: Theoretical Informatics pp 319-333

# Listing Acyclic Orientations of Graphs with Single and Multiple Sources

• Alessio Conte
• Roberto Grossi
• Andrea Marino
• Romeo Rizzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)

## Abstract

We study enumeration problems for the acyclic orientations of an undirected graph with n nodes and m edges, where each edge must be assigned a direction so that the resulting directed graph is acyclic. When the acyclic orientations have single or multiple sources specified as input along with the graph, our algorithm is the first one to provide guaranteed bounds, giving new bounds with a delay of $$O(m\cdot n)$$ time per solution and $$O(n^2)$$ working space. When no sources are specified, our algorithm improves over previous work by reducing the delay to O(m), and is the first one with linear delay.

## References

1. 1.
Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2), 125–134 (1992)
2. 2.
Alon, N., Tuza, Z.: The acyclic orientation game on random graphs. Random Struct. Algorithms 6(2–3), 261–268 (1995)
3. 3.
Barbosa, V.C., Szwarcfiter, J.L.: Generating all the acyclic orientations of an undirected graph. Inf. Process. Lett. 72(1), 71–74 (1999)
4. 4.
Benson, B., Chakrabarty, D., Tetali, P.: G-parking functions, acyclic orientations and spanning trees. Discrete Math. 310(8), 1340–1353 (2010)
5. 5.
Conte, A., Grossi, R., Marino, A., Rizzi, R.: Enumerating cyclic orientations of a graph. In: IWOCA, 26th International Workshop on Combinatorial Algorithms (2015, to appear)Google Scholar
6. 6.
Erdős, P., Katona, G., Társulat, B.J.M.: Theory of Graphs: Proceedings of the Colloquium Held at Tihany, Hungary, September 1966. Academic Press, New York (1968)
7. 7.
Iriarte, B.: Graph orientations and linear extensions. In: DMTCS Proceedings, pp. 945–956 (2014)Google Scholar
8. 8.
Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)
9. 9.
Johnson, R.: Network reliability and acyclic orientations. Networks 14(4), 489–505 (1984)
10. 10.
Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic Discrete Methods 7(2), 331–335 (1986)
11. 11.
Pikhurko, O.: Finding an unknown acyclic orientation of a given graph. Comb. Probab. Comput. 19, 121–131 (2010)
12. 12.
Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Fr. D’informatique Rech. Opérationnelle 1(5), 129–132 (1967)
13. 13.
Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feedback problems. Discrete Appl. Math. 117(1), 253–265 (2002)
14. 14.
Squire, M.B.: Generating the acyclic orientations of a graph. J. Algorithms 26(2), 275–290 (1998)
15. 15.
Stanley, R.: Acyclic orientations of graphs. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 453–460. Birkhäuser, Boston (1987)Google Scholar
16. 16.
Stanley, R.P.: What Is Enumerative Combinatorics?. Springer, New York (1986)
17. 17.
Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means of boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR 147, 728 (1962)

## Authors and Affiliations

• Alessio Conte
• 1
• Roberto Grossi
• 1
• Andrea Marino
• 1
Email author
• Romeo Rizzi
• 2
1. 1.Erable, InriaUniversità di PisaPisaItaly
2. 2.Università di VeronaVeronaItaly