Advertisement

On Mobile Agent Verifiable Problems

  • Evangelos BampasEmail author
  • David Ilcinkas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9644)

Abstract

We consider decision problems that are solved in a distributed fashion by synchronous mobile agents operating in an unknown, anonymous network. Each agent has a unique identifier and an input string and they have to decide collectively a property which may involve their input strings, the graph on which they are operating, and their particular starting positions. Building on recent work by Fraigniaud and Pelc [LATIN 2012, LNCS 7256, pp. 362–374], we introduce several natural new computability classes allowing for a finer classification of problems below \(\mathsf {co\text {-}MAV}\) or \(\mathsf {MAV}\), the latter being the class of problems that are verifiable when the agents are provided with an appropriate certificate. We provide inclusion and separation results among all these classes. We also determine their closure properties with respect to set-theoretic operations. Our main technical tool, which is of independent interest, is a new meta-protocol that enables the execution of a possibly infinite number of mobile agent protocols essentially in parallel, similarly to the well-known dovetailing technique from classical computability theory.

References

  1. 1.
    Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Distrib. Comput. 15(3), 137–153 (2002)CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed computability in anonymous networks. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 47–62. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Godard, E., Métivier, Y., Tel, G.: About the termination detection in the asynchronous message passing model. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 200–211. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving consensus. J. ACM 43(4), 685–722 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 109, 54–69 (2013)Google Scholar
  8. 8.
    Das, S., Kutten, S., Lotker, Z.: Distributed verification using mobile agents. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 330–347. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized distributed decision. Distrib. Comput. 27(6), 419–434 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally without identifiers? In: PODC 2013, pp. 157–165. ACM (2013)Google Scholar
  11. 11.
    Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM 60(5), 35 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fraigniaud, P., Pelc, A.: Decidability classes for mobile agents computing. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)CrossRefGoogle Scholar
  15. 15.
    Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM 42(3), 88–89 (1999)CrossRefGoogle Scholar
  16. 16.
    Markou, E.: Identifying hostile nodes in networks using mobile agents. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 108, 93–129 (2012)Google Scholar
  17. 17.
    Yamashita, M., Kameda, T.: Computing functions on asynchronous anonymous networks. Math. Syst. Theory 29(4), 331–356 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CNRS and University of Bordeaux, LaBRI, UMR 5800TalenceFrance

Personalised recommendations