Skip to main content

Syntactic Foams for Multifunctional Applications

  • Chapter
  • First Online:
Composite Materials

Abstract

Owing to their lightweight and high strength characteristics and tailorable end-use properties, rigid syntactic foams fabricated from polymeric binders, hollow micro-spheres, and other fillers, and their variants have assumed great importance in material design. The highly ordered syntactic foams have potential to be utilized in designs involving multifunctional requirements, viz., aerospace structures, radar transparency, microwave electronics, EMI shielding, etc. This overview article introduces syntactic foams and gives an insight into establishing multifunctional characteristics in them to meet the end applications and presents a collection of related literature on techniques and uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menges G, Knipschild F (1982) Stiffness and strength-rigid plastic foams. In: Hilyard NC (ed) Mechanics of cellular plastics. Applied Science Publishers, London, pp 27–72

    Google Scholar 

  2. Feldman D (1989) Polymer foams. In: Feldman D (ed) Polymeric building materials. Elsevier Science Publishers, New York, pp 283–355

    Google Scholar 

  3. Shutov FA (1981) Foamed polymers based on reactive oligomers. Adv Polym Sci 39:1–64

    Article  Google Scholar 

  4. Shutov FA (1983) IUPAC 29th international symposium on macromolecules, Bucharest

    Google Scholar 

  5. Hylard NC, Young J (1982) Introduction. In: Hylard NC (ed) Mechanics of cellular plastics. Applied Science Publishers, London, pp 1–26

    Google Scholar 

  6. Luxmoore AR, Owen RJ (1982) Syntactic foam. In: Hylard NC (ed) Mechanics of cellular plastics. Applied Science Publishers, London, pp 359–391

    Google Scholar 

  7. Shutov FA (1986) Syntactic polymer foams. Adv Polym Sci 73(74):63–123

    Article  Google Scholar 

  8. Price HJ, Nelson JB (1976) Phase relationship in three-phase composites which include a void phase. J Compos Mater 10:314

    Article  Google Scholar 

  9. Shutov FA (1983) Foamed polymers. Cellular structure and properties. Adv Polym Sci 51:155–218

    Article  Google Scholar 

  10. Puterman M, Narkis M, Kenig S (1980) Syntactic foams II. Preparation and characterization of three-phase systems. J Cell Plast 16:326–330

    Article  Google Scholar 

  11. Narkis M, Gerchcovich M, Puterman M, Kenig S (1982) Syntactic foams III. Three-phase materials produced from resin coated microballoons. J Cel Plast 18(4):230–232. doi:10.1177/0021955X8201800402

    Article  Google Scholar 

  12. Berlin AA, Shutov FA (1980) Chemistry and technology of gas-filled high polymers. Nauka, Moscow, p 503

    Google Scholar 

  13. Braun T, Farag AB (1978) Polyurethane foams and microspheres in analytical chemistry: improved liquid–solid, gas-solid and liquid-liquid contact via a new geometry of the solid phase. Anal Chim Acta 99(1):1–36

    Article  Google Scholar 

  14. Rand PB (1973) An aromatic polyimide syntactic foam. J Cell Plast 9(3):130–133. doi:10.1177/0021955X7300900304

    Article  Google Scholar 

  15. Weiser ES, Clair St. TL, Echigo Y, Kaneshiro H (2000) US Patent 6084000

    Google Scholar 

  16. Balyberdin GA, Orlov VA, Tarakanov OG (1974) Plast Massy 10:22–26

    Google Scholar 

  17. Sternfield A (1982) New types and sources of micro-spheres can help widen RP markets. Mod Plast Int 12(6):43–45

    Google Scholar 

  18. Cravens TE (1973) Syntactic foams utilising saran microspheres. J Cell Plast 9(6):260–267

    Google Scholar 

  19. Berlin AA, Shutov FA (1980) Strengthened gas-filled plastics. Khimia, Moscow

    Google Scholar 

  20. Mildner RC, Nacke KF, Veazey EW, Woodland PC (1970) Blocking multi-pair cable with plastic-microsphere syntactic foam. Mod Plast 47(5):98–99

    Google Scholar 

  21. Matthews RB, Swanson ML (1979) Fabrication of large (Th, U)O/sub 2/microspheres. Am Ceram Soc Bull 58(2):223

    Google Scholar 

  22. Bunn P, Mottram JT (1993) Manufacture and compression properties of syntactic foams. Composite 24(7):565–571

    Article  Google Scholar 

  23. Ravi Sekhar K (2006) Studies on processing and characterisation of syntactic foams with epoxy modified cyanate ester binder and glass microspheres. Dissertation, Indian Institute of Science

    Google Scholar 

  24. Gupta N, Ricci W (2006) Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness. Mater Sci Eng A 427(1–2):331–342

    Article  Google Scholar 

  25. Douglas AM (1996) US Patent 5532295

    Google Scholar 

  26. Gupta N, Priya S, Islam R, Ricci W (2006) Characterization of mechanical and electrical properties of epoxy-glass microballoon syntactic composites. Ferroelectrics 345:1–12

    Article  Google Scholar 

  27. Jadhav A (2003) High strain rate properties of polymer matrix composites. Dissertation, Louisiana State University

    Google Scholar 

  28. Gupta N (2007) A functionally graded syntactic foam material for high energy absorption under compression. Mater Lett 61:979–982

    Article  Google Scholar 

  29. Gupta N, Woldesenbet E, Kishore (2002) Compressive fracture features of syntactic foams-microscopic examination. J Mater Sci 37(15):3199–3209

    Google Scholar 

  30. Gupta N, Woldesenbet E (2004) Microballoon wall thickness effects on properties of syntactic foams. J Cell Plast 40(6):461–480

    Article  Google Scholar 

  31. Gupta N, Woldesenbet E, Mensah P (2004) Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Compos A Appl Sci Manufact 35(1):103–111

    Article  Google Scholar 

  32. Nutt SR, Vaikhanski L (2005) US Patent 6864297

    Google Scholar 

  33. Nowak GP, Tegeler AF, Timmons TL (1997) US Patent 5665787

    Google Scholar 

  34. Gupta N, Karthikeyan CS, Sankaran S, Kishore (1999) Correlation of processing methodology to the physical and mechanical properties of syntactic foams with and without fibers. Mater Charact 43(4):271–277

    Google Scholar 

  35. Gupta N, Kishore WE, Sankaran S (2001) Studies on compressive failure features in syntactic foam material. J Mater Sci 36(18):4485–4491

    Article  Google Scholar 

  36. Adrien J, Maire E, Gimenez N, Sauvant-Moynot V (2007) Experimental study of the compression behaviour of syntactic foams by in situ X-ray tomography. Acta Mater 55(5):1667–1679

    Article  Google Scholar 

  37. Karthikeyan CS, Sankaran S, Jagdish Kumar MN, Kishore (2001) Processing and compressive strengths of syntactic foams with and without fibrous reinforcements. J Appl Polym Sci 81(2):405–411

    Google Scholar 

  38. Karthikeyan CS, Sankaran S, Kishore (2004) Elastic behaviour of plain and fibre-reinforced syntactic foams under compression. Mater Lett 58(6):995–999

    Google Scholar 

  39. Karthikeyan CS, Sankaran S, Kishore (2000) A comparison of compressive properties of fibre-free and fibre-bearing syntactic foams. J Reinf Plast Compos 19(9):732–742

    Google Scholar 

  40. Karthikeyan CS, Kishore, Sankaran S (2001) Effect of absorption in aqueous and hygrothermal media on the compressive properties of glass fiber reinforced syntactic foam. J Reinf Plast Compos 20(11):982–993

    Google Scholar 

  41. Gupta N, Maharsia R (2005) Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications. Appl Compos Mater 12:247–261

    Article  Google Scholar 

  42. Karthikeyan CS, Sankaran S, Kishore (2000) Influence of chopped strand fibers on the flexural behaviour of syntactic foam core system. Polym Int 49:158–162

    Google Scholar 

  43. Karthikeyan CS, Sankaran S, Kishore (2007) Investigation of bending modulus of fiber-reinforced syntactic foams for sandwich and structural applications. Polym Adv Technol 18(3):254–256

    Google Scholar 

  44. Karthikeyan CS, Sankaran S, Kishore (2005) Flexural behaviour of fibre-reinforced syntactic foams. Macromol Mater Eng 290(1):60–65

    Google Scholar 

  45. Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend tests in syntactic foams. Part II: effect of microballoons content on shear strength. J Appl Polym Sci 98:680–686

    Google Scholar 

  46. Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend tests in syntactic foams. Part I: microscopic characterization of the failure zones. J Appl Polym Sci 98:673–679

    Google Scholar 

  47. Kishore, Shankar R, Sankaran S (2005) Short-beam three-point bend test study in syntactic foams. Part III: effects of interface modification on strength and fractographic features. J Appl Polym Sci 98:687–693

    Google Scholar 

  48. Kishore, Shankar R, Sankaran S (2005) Gradient syntactic foams: tensile strength, modulus and fractographic features. Mat Sci Eng A 412:153–158

    Google Scholar 

  49. Wouterson EM, Boey FYC, Hu X, Wong SC (2005) Specific properties and fracture toughness of syntactic foam: effect of foam microstructures. Comp Sci Technol 65:1840–1850

    Article  Google Scholar 

  50. Wouterson EM, Boey FYC, Hu X, Wong SC (2007) Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer 48(11):3183–3191

    Article  Google Scholar 

  51. John B, Nair C, Devi K, Ninan K (2007) Effect of low-density filler on mechanical properties of syntactic foams of cyanate ester. J Mater Sci 42(14):5398–5405

    Article  Google Scholar 

  52. Devi KA, John B, Nair CPR, Ninan KN (2007) Syntactic foam composites of epoxy-allyl phenol-bismaleimide ternary blend – processing and properties. J Appl Polym Sci 105(6):3715–3722

    Article  Google Scholar 

  53. Capela C, Costa JD, Ferreira JAM (2007) Test conditions effect on the fracture toughness of hollow glass micro-sphere filled composites. Strain 44(2):141–146

    Article  Google Scholar 

  54. Li G, Jones N (2007) Development of rubberized syntactic foam. Compos A Appl Sci Manufact 38(6):1483–1492

    Article  Google Scholar 

  55. Maharsia RR (2005) Development of high performance hybrid syntactic foams: structure and material property characterization. Dissertation, Louisiana State University

    Google Scholar 

  56. Wehmer P (2008) High strain rate characteristics of rubber modified syntactic foams. Dissertation, Louisiana State University

    Google Scholar 

  57. Song B, Chen W, Frew DJJ (2004) Dynamic compressive response and failure behavior of an epoxy syntactic foam. Compos Mater 38(11):915–936

    Article  Google Scholar 

  58. Peter S, Woldesenbet E (2008) Nanoclay syntactic foam composites – high strain rate properties. Mater Sci Eng A 494(1–2):179–197

    Article  Google Scholar 

  59. Saha MC, Nilufar S (2009) Nanoclay-reinforced syntactic foams: flexure and thermal behavior. Polym Compos 31(8):1332–1342

    Google Scholar 

  60. Woldesenbet E, Mylavarapu P (2007) Dynamic modulus of syntactic foam core – a non destructive approach. In: Gdoutos EE (ed) Experimental analysis of nano and engineering materials and structures. Springer, Dordrecht, pp 716–762

    Google Scholar 

  61. Gupta N, Woldesenbet E (2005) Characterization of flexural properties of syntactic foam core sandwich composites and effect of density variation. J Compos Mater 39(24):2197–2212

    Article  Google Scholar 

  62. Gupta N, Woldesenbet E, Kishore, Sankaran S (2002) Response of syntactic foam core sandwich structured composites to three-point bending. J Sandw Struct Mater 4(3):249–272

    Google Scholar 

  63. Gupta N, Kishore, Sankaran S (1999) On the characterization of syntactic foam core sandwich composites for compressive properties. J Rein Plast Compos 18(14):1347–1357

    Google Scholar 

  64. John B, Nair CPR, Mathew D, Ninan KN (2008) Foam sandwich composites with cyanate ester based syntactic foam as core and carbon-cyanate ester as skin: processing and properties. J Appl Polym Sci 110(3):1366–1374

    Article  Google Scholar 

  65. Islam MM, Kim HS (2007) Properties and mechanical behaviour of novel sandwich composites made of syntactic foam and paper skin. In: Abstracts of the 5th Australian congress on applied mechanics, Brisbane, 10–12 Dec 2007

    Google Scholar 

  66. Sankaran S, Jagdish Kumar MN, Rajput C, Ravishankar BN, Dasgupta S (2007) Mechanical evaluation and weight optimization of CFRP skin-syntactic foam core sandwich composites. In: Abstracts of the 2nd international conference on recent advances on composite materials – ICRACM 2007, New Delhi, 20–23 Feb 2007

    Google Scholar 

  67. Sankaran S (1996) Studies on FRP composites with modified epoxies: structural and mechanical evaluation of syntactic foam sandwich composites. Dissertation, Indian Institute of Science

    Google Scholar 

  68. Sankaran S, Rajaiah K, Chanda M (1997) Failure modes and fractography of syntactic foam sandwich beams under static loading. In: Abstracts of the 6th NASAS, Bangalore, 07–08 Nov 1997

    Google Scholar 

  69. Woldensenbet E, Narendra S (2009) Flexural properties of nanoclay syntactic foam sandwich structures. J Sandw Struct Mater 11:425–444

    Article  Google Scholar 

  70. Capela C, Ferreira JAM, Costa JD (2013) Effect of the foam core density on the bending response on sandwich composites. Fibers Polym 14(4):597–602

    Article  Google Scholar 

  71. Sankaran S, Ravi Sekhar K, Raju G, Jagdish Kumar MN (2006) Characterization of epoxy syntactic foams by dynamic mechanical analysis. J Mater Sci 41:4041–4046

    Article  Google Scholar 

  72. Fine T, Sautereau H, Sauvant-Moynot V (2003) Innovative processing and mechanical properties of high temperature syntactic foams based on a thermoplastic/thermoset matrix. J Mater Sci 38(12):2709–2716

    Article  Google Scholar 

  73. Ravi Sekhar K, Ravishankar BN, Sankaran S (2006) Cure characterization of thermosetting resins in composite systems by dynamic mechanical analysis. In: Abstracts of the 5th ISAMPE national conference on composites (INCCOM 5), Hyderabad, 24–25 Nov 2006

    Google Scholar 

  74. Sankaran S, Ravishankar BN, Ravi Sekhar K, Jagdish Kumar MN (2005) Cyanate ester sandwich composites for radome applications. In: Abstracts of the 4th ISAMPE national conference on composites (INCCOM 4) Coimbatore, 9–10 Dec 2005 (Figures and tables pertaining to this reference in the article also include relevant additional data experimentally obtained by the authors subsequently)

    Google Scholar 

  75. Ravi Sekhar K, Kishore, Sankaran S (2008) Cure behavior of epoxy-cyanate ester blend in composite systems: evaluation studies in neat resin cast by thermal and FTIR techniques. J Appl Polym Sci 109:2023–2028

    Google Scholar 

  76. Wang J, Liang G, He S, Yang L (2010) Curing behavior and mechanical properties of hollow glass microsphere/bisphenol a dicyanate ester composites. J Appl Polym Sci 118(3):1252–1256

    Google Scholar 

  77. Keller TM, Matthew L (2014) US Patent 8,288,454, 16 Jan 2014

    Google Scholar 

  78. Yung KC, Zhu BL, Yue TM, Xie CS (2009) Preparation and properties of hollow glass microsphere filled epoxy–matrix composites. Compos Sci Technol 69(2):260–264

    Article  Google Scholar 

  79. Cyanate ester syntactic foams, Technical bulletin 370–2, Document control no N-10-000-501905-3 11/03/11, Cuming Microwave Corporation, 264 Bodwell Street, Avon, MA 02322, USA

    Google Scholar 

  80. Product literature on syntactic foams, Utility Development Corporation, 112 Naylon Avenue, Livingston, NJ 07039, USA

    Google Scholar 

  81. Technical data sheet, Tencate Advanced Composites USA, Inc., 18410 Butterfield Blvd. Morgan Hill, CA 95037, USA

    Google Scholar 

  82. Product data sheet, Cornerstone Research Group, Inc. 2750 Indian Ripple Rd., Dayton, OH 45440, USA

    Google Scholar 

  83. Gupta N, Chakravarthy V, Shumugasamy (2015) US Patent publication no US 2015/0031793 A1, 29 Jan 2015

    Google Scholar 

  84. Harrison ES, Melquist JL, Hemming LH (1997) WIPO Patent Application WO/1997/029907

    Google Scholar 

  85. BASF (1992) US Patent 5167870

    Google Scholar 

  86. Meades GF (1990) EP0359504 Patent

    Google Scholar 

  87. Sankaran S, Jagdish Kumar, MN, Govinda Raju (1996) Materials and processes for foam sandwich radomes. In: Abstracts of the national seminar on composites product development (NASCOMP), Bangalore, 22–23 Apr 1996

    Google Scholar 

  88. Speak SC, Sitt H, Fuse RH (1991) Novel cyanate ester based products for high performance radome applications. In: Abstracts of the 36th international SAMPE symposium, San Diego, California, April 15–18, 1991 vol 36, pp 336–347

    Google Scholar 

  89. Ziolkowski FP, Clark TJ (2014) US Patent 8,917,220 B2

    Google Scholar 

  90. Ziolkowski F, Clark T (2015) US Patent 7,420,523B1

    Google Scholar 

  91. Kenig S, Raiter I, Narkis M (2004) Three-phase carbon microballoon syntactic foam composites. Polym Compos 6(2):100–104

    Article  Google Scholar 

  92. Mereer CL, Philipps TE (1996) US Patent 5587231

    Google Scholar 

  93. Dasgupta S, Ravi Sekhar K, Sankaran S (2006) Estimation and evaluation of EMI shielding capabilities of electrically conducting epoxy syntactic foam. In: Abstracts of the 5th ISAMPE national conference on composites (INCCOM 5), Hyderabad, 24–25 Nov 2006

    Google Scholar 

  94. Ravishankar BN, Ravi Sekhar K, Dasgupta S, Sankaran S (2007) Carbon fibre reinforced composite foam for multifunctional applications. In: Abstracts of the international and ISAMPE national conference on composites (INCCOM 6), Kanpur, 12–14 Dec 2007

    Google Scholar 

  95. Dasgupta S, Ravi Sekhar K, Sankaran S, Jagdish Kumar MN, Prasad V (2007) Challenges in electrical characterisation of lightweight polymer composites for electronic packaging applications. In: Abstracts of the international conference on polymer materials and power engineering (ICPMPE 2007), Bangalore, 4–6 Oct 2007

    Google Scholar 

  96. White DRJ (1971) EMI/EMC handbook series. Don White Consultants, Germantown, p 4

    Google Scholar 

  97. Krueger QJ (2002) Electromagnetic interference and radio frequency interference shielding of carbon-filled conductive resins. Dissertation, Michigan Technological University

    Google Scholar 

  98. Gladysz G, Carlisle KB, Mendoza D (2011) US Patent publication no 2011/0020630, 27 Jan 2011

    Google Scholar 

  99. Huang C, Huang Z, Qin Y, Ding J, Lv X (2015) Mechanical and dynamic mechanical properties of epoxy syntactic foams reinforced by short carbon fiber. Polym Compos. doi:10.1002/pc.23374

  100. Sankaran S, Dasgupta S, Ravi Sekhar K, Jagdish Kumar MN (2006) Thermosetting polymer composites for EMI shielding applications. In: Abstracts of the 9th international conference on electromagnetic interference and compatibility (INCEMIC 2006), Bangalore, 23–24 Feb 2006

    Google Scholar 

  101. Dasgupta S, Ravi Sekhar K, Ravishankar BN, Jagdish Kumar MN, Sankaran S (2008) Sandwich composite approach for EMI shielding structures. In: Abstracts of the 10th international conference on electromagnetic interference and compatibility (INCEMIC 2008), Bangalore, 26–27 Nov 2008

    Google Scholar 

  102. Dasgupta S, Ravi Sekhar K, Jagdish Kumar MN, Sankaran S (2008) Syntactic foam core sandwich composites for electronic packaging applications. In: Abstracts of the ISAMPE national conference on composites (INCCOM 7), Bangalore, 4–5 Dec 2008

    Google Scholar 

  103. Sankaran S, Dasgupta S, Ravi Sekhar K, Ghosh C (2005) Carbon nanotubes reinforced syntactic composite foams. In: Abstracts of the 4th ISAMPE national conference on composites (INCCOM 4), Coimbatore, 9–10 Dec 2005

    Google Scholar 

  104. Dasgupta S, Ravi Sekhar K, Sankaran S (2009) Quality control issues: the other side of carbon nanotubes. J Aerosp Qual Reliab 3(2) 4(1–2) 5(1):1–10

    Google Scholar 

  105. Sankaran S, Dasgupta S, Ravi Sekhar K, Ravishankar BN (2014) US Patent 8,734,685 B2

    Google Scholar 

  106. Sankaran S, Dasgupta S, Ravi Sekhar K (2007) Electrically conducting nanocomposite foam. In: Abstracts of the international conference on syntactic and composite foams (SCF-II), Davos, 5–10 Aug 2007

    Google Scholar 

  107. Guzman ME, Rodriguez AJ, Minaie B, Violette M (2012) Processing and properties of syntactic foams reinforced with carbon nanotubes. J Appl Polym Sci 124(3):2383–2394

    Article  Google Scholar 

  108. Zegeye EF, Woldesenbet E (2012) Processing and mechanical characterization of carbon nanotube reinforced syntactic foams. J Rein Plast Compas 31(15):1045–1052

    Article  Google Scholar 

  109. Zegeye E, Ghamsari AK, Woldesenbet E (2014) Mechanical properties of graphene platelets reinforced syntactic foams. Compos B Eng 60:268–273

    Article  Google Scholar 

  110. Dasgupta S, Ravishankar B N, Ravi Sekhar K, Ghosh C, Sankaran S (2011) Silver coated hollow glass microsphres embedded electrically conducting syntactic foam. In: Abstracts of the international conference on syntactic and composite foams (SCF-III), Cetraro, 29 May–3 June 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sankaran, S., Ravishankar, B.N., Ravi Sekhar, K., Dasgupta, S., Jagdish Kumar, M.N. (2017). Syntactic Foams for Multifunctional Applications. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_9

Download citation

Publish with us

Policies and ethics