Skip to main content

Polymer-Based Composite Materials: Characterizations

  • Chapter
  • First Online:
Composite Materials

Abstract

Various types of composite materials are becoming an inevitable part of our day-to-day life since these are used for a variety of applications. A better understanding on the various properties of the composites is very helpful in their targeted applications, and hence characterizing the composite materials by different techniques play a major role in the development of long-life, high-quality composite products. The polymer-based composite materials provide large amount of flexibility and lightweight to the final product. The selection of various reinforcements and polymer matrices is very critical in designing a desired product. In this chapter, various techniques used for characterizing the polymer-based composite materials in order to examine their mechanical, thermal, electrical, magnetic, piezoelectric, tribological, rheological, and biological properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrom BT (2002) Manufacturing of polymer composites. Nelson Thornes, Cheltenham

    Google Scholar 

  2. Ravi S, Iyengar NGR, Kishore NN, Shukla A (2000) Influence of fiber volume fraction on dynamic damage in woven glass fabric composites: an experimental study. Adv Compos Mater 9:319

    Article  Google Scholar 

  3. Gdoutos EE, Pilakoutas K, Rodopoulos CA (2000) Failure analysis of industrial composite materials. McGraw-Hill, New York

    Google Scholar 

  4. Kelly A (1990) Concise encyclopedia of composite materials. MIT Press, Cambridge

    Google Scholar 

  5. ASTM D 3171–06 (2006) Standard test methods for constituent content of composite materials. Annual Book of ASTM Standards 15.03

    Google Scholar 

  6. ASTM D 2584–02 (2006) Standard test method for ignition loss of cured reinforced resins. Annual Book of ASTM Standards 8.01

    Google Scholar 

  7. Wu Y, Shivpuri R, Lee LJ (1998) Effect of macro and micro voids on elastic properties of polymer composites. J Reinf Plast Compos 17:1391

    Google Scholar 

  8. Summerscales J (1987) Non-destructive testing of fibre-reinforced plastics composites. Elsevier Science Publishers, London

    Google Scholar 

  9. Bowles KJ, Frimpong S (1992) Void effects on the interlaminar shear strength of unidirectional graphite fiber-reinforced composites. J Compos Mater 26:1487

    Article  Google Scholar 

  10. Chambers AR, Earl JS, Squires CA, Suhot MA (2006) The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications. Int J Fatigue 28:1389

    Article  Google Scholar 

  11. ASTM D 1505–03 (2006) Standard test method for density of plastics by the density-gradient technique. Annual Book of ASTM Standards 8.01

    Google Scholar 

  12. ASTM D 3800–99 (2006) Standard test method for density of high-modulus fibres. Annual book of ASTM standards 15.03

    Google Scholar 

  13. Zahavi E, Torbilo V (1996) Fatigue design: life expectancy of machine parts. CRC Press, Boca Raton

    Google Scholar 

  14. Graham TS (2002) Industrial metrology: surfaces and roughness. Springer, Berlin

    Google Scholar 

  15. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Technol 160:160

    Article  Google Scholar 

  16. Savage G (1993) Carbon-carbon composites. Chapman and Hall, London

    Book  Google Scholar 

  17. Kessler MR (2004) Advanced topics in characterization of composites. Trafford Publishing, Victoria

    Google Scholar 

  18. Theocaris PS, Stassinakis CA (1981) Crack propagation in fibrous composite materials studied by SEM. J Compos Mater 15:133

    Article  Google Scholar 

  19. Kreider KG (ed) (1974) Metallic matrix composites. Academic, London

    Google Scholar 

  20. Hill RG (1968) Evaluation of elastic moduli of bilaminate filament-wound composites – crazed and uncrazed coupons from a rocket case and laboratory panel are subjected to static and dynamic loading. Exp Mech 8:75

    Article  Google Scholar 

  21. Lantz RB (1969) Boron epoxy laminate test method. J Compos Mater 3:642

    Google Scholar 

  22. Richards GL, Airhart TP, Ashton JE (1969) Off-axis tensile coupon testing. J Compos Mater 3:586

    Article  Google Scholar 

  23. Pagano NJ, Halpin JC (1968) Influence of end constraint in the testing of anisotropic bodies. J Compos Mater 2:18

    Article  Google Scholar 

  24. ASTM D 3039 (2006) Standard test method for tensile properties of polymer matrix composite materials. Annual Book of ASTM Standards 15.03

    Google Scholar 

  25. Niihara K et al (1996) High temperature strength and creep behavior of ceramic based nanocomposites roles of intergranular nano-sized particulates. In: Hui D (ed) Proceedings of the 3rd international conference on composite engineering (ICCE/3), New Orleans, 1996

    Google Scholar 

  26. Daniel IM, Gdoutos EE, Rajapakse YDS (eds) (2009) Major accomplishments in composite materials and sandwich structures. Springer, London

    Google Scholar 

  27. Thomas S, Joseph K, Malhotra SK, Goda K, Sreekala MS (eds) (2012) Polymer composites, volume 1, macro- and microcomposites. Wiley-VCH, Weinheim

    Google Scholar 

  28. Hsu PW, Herakovich CT (1977) Edge effects in angle-ply composite laminates. J Compos Mater 11:422

    Article  Google Scholar 

  29. Pipes RB, Pagano NJ (1970) Interlaminar stresses in composite laminates under uniform axial extension. J Compos Mater 4:538

    Google Scholar 

  30. Wang JTS, Dickson JN (1978) Interlaminar stress in symmetric composite laminates. J Compos Mater 12:390

    Article  Google Scholar 

  31. Gu Y, Liang G (2006) Self-reinforced interlayer shearing intensity resin base fibre reinforced composite material preparation method. Chinese Patent 1,762,686

    Google Scholar 

  32. Sato H, Suzuki Y (2005) Polyacrylonitrile-based carbon fibre and method for producing the same. JP Patent 2,005,314,830

    Google Scholar 

  33. Barelko VV et al (2005) Fibre-glass reinforcing weave filler for polymeric glass composites. RU Patent 2,245,477

    Google Scholar 

  34. Goto K et al (2004) Epoxy resin composition prepreg and fibre-reinforced composite material. JP Patent 2,004,292,594

    Google Scholar 

  35. Muraki T, Nishiyama S (2003) Method for producing high-density fibrous structure and the resultant high-density fibrous structure. JP Patent 2,003,073,968

    Google Scholar 

  36. Mortaigne B, Regnier N (2000) Study of epoxy and epoxy–cyanate networks thermal degradation to predict materials lifetime in use conditions. J Appl Polym Sci 77:3142

    Article  Google Scholar 

  37. Wu SJ, Lin TK, Zhang JX, Shyu SS (2000) Properties of cyanate ester-cured epoxy/polyphenylene oxide blends as a matrix material for Kevlar fiber composites. J Adhes Sci Technol 14:1423

    Article  Google Scholar 

  38. Ratna D, Chongdar TK, Chakraborty BC (2004) Mechanical characterization of new glass fiber reinforced epoxy composites. Polym Compos 25:165

    Article  Google Scholar 

  39. DeCarli M, Kozielski K, Tian W, Varley R (2005) Toughening of a carbon fibre reinforced epoxy anhydride composite using an epoxy terminated hyperbranched modifier. Compos Sci Technol 65:2156

    Article  Google Scholar 

  40. Matheswaran M, Padmanabhan K, Kishore (1995) Static and impact behavior of thermoplastic modified glass fabric/epoxy composites. J Mater Sci Lett 14:951

    Article  Google Scholar 

  41. Sainathan N, Padmanabhan K, Sashidhara S, Rao RMVGK, Kishore (1995) Influence of particulate graphite additions on the shear related behavior of glass fabric reinforced epoxy composites. J Reinf Plast Compos 14:445

    Google Scholar 

  42. Podgaiz RH, Williams RJJ (1997) Effects of fiber coatings on mechanical properties of unidirectional glass-reinforced composites. Compos Sci Technol 57:1071

    Article  Google Scholar 

  43. John NA, Brown JR (1998) Flexural and interlaminar shear properties of glass-reinforced phenolic composites. Compos Part A 29A:939

    Article  Google Scholar 

  44. Cho D, Yun SH, Kim J, Lim S, Park M, Lee S-S, Lee G-W (2004) Influence of silane coupling agents on the interlaminar and thermal properties of woven glass fabric/nylon 6 composites. Macromol Res 12:119

    Article  Google Scholar 

  45. Barraza HJ, Aktas L, Hamidi YK, Long J Jr, Orear EA, Altan MC (2003) Moisture absorption and wet-adhesion properties of resin transfer molded (RTM) composites containing elastomer-coated glass fibers. J Adhes Sci Technol 17:217

    Article  Google Scholar 

  46. Park R, Jang J (2004) Effect of surface treatment on the mechanical properties of glass fiber/vinylester composites. J Appl Polym Sci 91:3730

    Article  Google Scholar 

  47. Li Y, Mai Y-W, Ye L (2005) Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Compos Interfaces 12:141

    Article  Google Scholar 

  48. Zhang C, Hoa SV, Ganesan R (2002) Experimental characterization of interlaminar shear strengths of graphite/epoxy laminated composites. J Compos Mater 36:1615

    Article  Google Scholar 

  49. Okada T, Nishijima S (1990) Investigation of interlaminar shear behavior of organic composites at low temperatures. Adv Cryog Eng 36B:811

    Google Scholar 

  50. Vishwanath B, Verma AP, Rao CVSK (1991) Effect of fabric geometry on friction and wear of glass fiber-reinforced composites. Wear 145:315

    Article  Google Scholar 

  51. Costa ML, Almeida SFMD, Rezende MC (2005) Critical void content for polymer composite laminates. AIAA J 43:1336

    Article  Google Scholar 

  52. Ray BC (2006) Loading rate sensitivity of glass fiber-epoxy composite at ambient and sub-ambient temperatures. J Reinf Plast Compos 25:329

    Article  Google Scholar 

  53. Ray BC (2006) Loading rate effects on mechanical properties of polymer composites at ultralow temperatures. J Appl Polym Sci 100:2289

    Article  Google Scholar 

  54. Mouritz AP (2000) Ultrasonic and interlaminar properties of highly porous composites. J Compos Mater 34:218

    Article  Google Scholar 

  55. Smith JC, Blandford JM, Schiefer HF (1960) Stress–strain relationships. In yarns subjected to rapid impact loading. Text Res J 30:752

    Google Scholar 

  56. Chocron-Benloulo IS, Sanchez-Galvez V (1996) Impact resistance of polymeric matrix composites. In: Hui D (ed) Proceedings of the third international conference on composite engineering (ICCE/3), New Orleans, 1996

    Google Scholar 

  57. Mueller DH (2004) Improving the impact strength of natural fiber reinforced composites by specifically designed material and process parameters. INJ Winter 31:28

    Google Scholar 

  58. Foster GC (1998) Tensile and flexure strength of unidirectional fiber reinforced composites: direct numerical simulations and analytic models. Dissertation, Virginia Polytechnic Institute and State University

    Google Scholar 

  59. Dash PK, Chatterjee AK (2004) Effects of environment on fracture toughness of woven carbon/epoxy composite. J Inst Eng 85:1

    Google Scholar 

  60. Kim J-K, Mai Y-W (1993) Interfaces in composites. In: Chou TW (ed) Structure and properties of fibre composites, vol 13. VCH Publishers, Weinheim, pp 239–289

    Google Scholar 

  61. Metcalfe AG (ed) (1974) Interfaces in metal matrix composites. Academic, London

    Google Scholar 

  62. Wilkins DJ, Eisenmann JR, Camin RA, Margolis WS, Benson RA (1982) Characterizing delamination growth in graphite-epoxy. In: Reifsnider KL (ed) Damage in composite materials. ASTM International, Philadelphia, p 168

    Google Scholar 

  63. Han KS, Koutsky J (1981) The interlaminar fracture energy of glass fiber reinforced polyester composites. J Compos Mater 15:371

    Google Scholar 

  64. Devitt DF, Schapery RA, Bradley WL (1980) A method for determining the mode I delamination fracture toughness of elastic and viscoelastic composite materials. J Compos Mater 14:270

    Google Scholar 

  65. Mall S, Law GE, Katouzian M (1987) Loading rate effect on interlaminar fracture toughness of a thermoplastic composite. J Compos Mater 21:569

    Article  Google Scholar 

  66. Feih S, Wei J, Kingshott P, Sorensen BF (2005) The influence of fibre sizing on the strength and fracture toughness of glass fibre composites. Compos Part A Appl S 36:245

    Article  Google Scholar 

  67. Tanoglu M, Seyhan AT (2003) Investigating the effects of a polyester preforming binder on the mechanical and ballistic performance of E-glass fiber reinforced polyester composites. Int J Adhes Adhes 23:1

    Article  Google Scholar 

  68. Compston P, Jar P-YB, Davies P (1998) Matrix effect on the static and dynamic interlaminar fracture toughness of glass-fiber marine composites. Compos Part B Eng 29:505

    Article  Google Scholar 

  69. Kuboki T, Jar PYB, Forest TW (2003) Influence of interlaminar fracture toughness on impact resistance of glass fiber reinforced polymers. Compos Sci Technol 63:943

    Article  Google Scholar 

  70. Srivastava VK, Hogg PJ (1998) Moisture effects on the toughness, mode-I and mode-II of particles filled quasi-isotropic glass-fiber reinforced polyester resin composites. J Mater Res 33:1129

    Google Scholar 

  71. Kang TJ, Lee SH (1997) Mechanical properties of nonwoven glass fiber composites. Polym Polym Compos 5:29

    Google Scholar 

  72. Shetty MR, Kumar KRV, Sudhir S, Raghu P, Madhuranath AD, Rao RMVGK (2000) Effect of fiber orientation on mode-I interlaminar fracture toughness of glass epoxy composites. J Reinf Plast Compos 19:606

    Article  Google Scholar 

  73. Sela N, Ishai O, Banks-Sills L (1989) The effect of adhesive thickness on interlaminar fracture toughness of interleaved CFRP specimens. Composites 20:257

    Article  Google Scholar 

  74. Yang Z, Sun CT (2000) Interlaminar fracture toughness of a graphite/epoxy multidirectional composite. J Eng Mater Technol 122:428

    Article  Google Scholar 

  75. Yuan Q, Karger-Kocsis J (1996) On the efficiency of interleaves in carbon fiber/epoxy composite laminates by the fractal approach. J Mater Sci Lett 15:842

    Article  Google Scholar 

  76. Barikani M, Saidpour H, Sezen M (2002) Mode-I interlaminar fracture toughness in unidirectional carbon-fiber/epoxy composites. Iran Polym J 11:413

    Google Scholar 

  77. Shindo Y, Shinohe D, Kumagai S, Horiguchi K (2005) Analysis and testing of mixed-mode interlaminar fracture behavior of glass-cloth/epoxy laminates at cryogenic temperatures. J Eng Mater Technol 127:468

    Article  Google Scholar 

  78. Stinchcomb WW, Ashbaugh NE (eds) (1993) Composite materials fatigue and fracture. ASTM International, Philadelphia

    Google Scholar 

  79. Wang R-M, Zheng S-R, Zheng Y (2011) Polymer matrix composites and technology. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  80. Halpin Affdl JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344

    Article  Google Scholar 

  81. Halpin JC, Tsai SW (1967) Environmental factors in composite design. In: Airforce materials laboratory technical report, AFML-TR-67-423

    Google Scholar 

  82. Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  83. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  84. Lu L, Fuh J (2001) Laser-induced materials and processes for rapid prototyping. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  85. Campbell FC (2010) Structural composite materials. ASM International, Materials Park

    Google Scholar 

  86. Epparachchi JA, Clausen PD (2000) A new approach to a fatigue damage model for glass-fiber reinforced plastic composites. In: Hui D (ed) Proceedings of the seventh international conference on composites engineering, ICCE/7, Denver 2000

    Google Scholar 

  87. Toumi RB, Renard J, Monin M, Nimdum P (2013) Fatigue damage modelling of continuous E-glass fibre/epoxy composite. Procedia Eng 66:723

    Article  Google Scholar 

  88. Sreekala MS, Kumaran MG, Joseph R, Thomas S (2001) Stress-relaxation behaviour in composites based on short oil-palm fibres and phenol formaldehyde resin. Compos Sci Technol 61:1175

    Article  Google Scholar 

  89. Pothan LA, Neelakantan NR, Rao B, Thomas S (2004) Stress relaxation behavior of banana fiber-reinforced polyester composites. J Reinf Plast Compos 23:153

    Article  Google Scholar 

  90. Barpanda D, Mantena PR (1998) Effect of hybridization on the creep and stress relaxation characteristics of pultruded composites. J Reinf Plast Compos 17:234

    Google Scholar 

  91. Geethamma VG, Pothen LA, Rhao B, Neelakantan NR, Thomas S (2004) Tensile stress relaxation of short-coir-fiber-reinforced natural rubber composites. J Appl Polym Sci 94:96

    Article  Google Scholar 

  92. Kawai M, Kazama T, Masuko Y, Tsuda H, Takahashi J, Kemmochi K (2004) Stress relaxation behavior of unidirectional carbon/epoxy composites at elevated temperature and analysis using visco-plasticity mode. JSME Int J A-Solid M 47:8

    Article  Google Scholar 

  93. Lifshitz JM, Rotem A (1970) Time-dependent longitudinal strength of unidirectional fibrous composites. Fibre Sci Technol 3:1

    Article  Google Scholar 

  94. Gutman EM, Soncino R (1995) Environmental effect on stress relaxation in polyester-fiberglass composite. Polym Compos 16:518

    Article  Google Scholar 

  95. Wortmann F-J, Schulz KV (1995) Stress relaxation and time/temperature superposition of polypropylene fibers. Polymer 36:315

    Article  Google Scholar 

  96. Ikeda S (1987) Evaluation of the chemical resistance of fiber-reinforced plastics by stress relaxation method. Nippon Zairyo Gakkai 26:127

    Google Scholar 

  97. Hashemi S, Kinloch AJ, Williams JG (1990) The effects of geometry, rate and temperature on the mode I, mode II and mixed-mode I/II interlaminar fracture of carbon fiber/poly(ether ether ketone) composites. J Compos Mater 24:918

    Article  Google Scholar 

  98. Sloan FE, Seymour RJ (1992) The effect of seawater exposure on Mode I interlaminar fracture and crack growth in graphite/epoxy. J Compos Mater 26:2655

    Article  Google Scholar 

  99. Takeda N, Tohdoh M, Takahashi K (1995) Interlaminar fracture toughness degradation of radiation-damaged GFRP and CFRP composites. Adv Compos Mater 4:343

    Article  Google Scholar 

  100. Watt A, Goodwin AA, Mouritz AP (1998) Thermal degradation of the Mode I interlaminar fracture properties of stitched glass fiber/vinyl ester composites. J Mater Sci 33:2629

    Article  Google Scholar 

  101. Pavlidou S, Papaspyrides CD (2003) The effect of hygrothermal history on water sorption and interlaminar shear strength of glass/polyester composites with different interfacial strength. Compos Part A 34:1117

    Article  Google Scholar 

  102. Davies P, Mazeas F, Casari P (2001) Sea water aging of glass reinforced composites: shear behaviour and damage modelling. J Compos Mater 35:1343

    Google Scholar 

  103. Apicella A, Migliaresi C, Nicolais L, Iaccarino L, Roccotelli S (1983) The water ageing of unsaturated polyester-based composites: influence of resin chemical structure. Composites 14:387

    Article  Google Scholar 

  104. Choqueuse D, Davies P, Mazeas F, Baizeau R (1997) Aging of composites in water: comparison of five materials in terms of absorption kinetics and evolution of mechanical properties. In: Gates TS, Zureick A-H (eds) High temperature and environmental effects on polymeric composites, vol 2. ASTM International, Philadelphia, p 73

    Chapter  Google Scholar 

  105. Jacobson NS, Fox DS, Opila EJ (1998) High temperature oxidation of ceramic matrix composites. Pure Appl Chem 70:493

    Article  Google Scholar 

  106. Rochais D, Houedec HL, Enguehard F, Jumel J, Lepoutre F (2005) Microscale thermal characterization at temperatures up to 1000°C by photoreflectance microscopy: application to the characterization of carbon fibers. J Phys D Appl Phys 38:1498

    Article  Google Scholar 

  107. Kiralp S, Kucukyavuz Z, Qasrawi AF (2003) Preparation and characterization of conducting polybutadiene/polythiophene composites. Turk J Chem 27:417

    Google Scholar 

  108. Lee SL, Chen TM (1993) Preparation and characterization of a ceramic superconductor/nylon 6,6 composite. Chin J Phys 31:1175

    Google Scholar 

  109. Lagorce LK, Allen MG (1997) Magnetic and mechanical properties of micromachined strontium ferrite/polyimide composites. J Microelectromech Syst 6:307

    Article  Google Scholar 

  110. Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, London

    Google Scholar 

  111. Fang Q et al (1996) Erosive wear behaviour of Al2O3-fiber reinforced aluminium based metal matrix composites (MMCs). In: Hui D (ed) Proceedings of the third international conference on composite engineering, ICCE/3, New Orleans, 1996

    Google Scholar 

  112. Fink A, Kolesnikov B (2005) Hybrid titanium composite material improving composite structure coupling. Accessed 09 July 2015. http://www.dlr.de/fa/Portaldata/17/Resources/dokumente/publikationen/2005/08_fink.pdf

  113. Ferguson R (2004) Effect of local constraint on measured bearing stress in carbon/epoxy laminate. In: Proceedings of the 2nd international conference on composites testing and model identification, Bristol, 21–23 Sept 2004

    Google Scholar 

  114. Cervenka A, Allan PS (1997) Characterization of finite length fiber composites: Part I. Introductory paper (technical report). Pure Appl Chem 69:1693

    Google Scholar 

  115. Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG (2005) Rheological behavior and mechanical characterization of injectable poly(propylenefumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16:S531

    Article  Google Scholar 

  116. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  117. Wang M, Porter D, Bonfield W (1994) Processing, characterisation, and evaluation of hydroxyapatite reinforced polyethylene composites. Br Ceram Trans 93:91

    Google Scholar 

  118. Wang M, Bonfield W (2001) Chemically coupled hydroxyapatitepolyethylene composites: structure and properties. Biomaterials 22:1311

    Article  Google Scholar 

  119. Wang M, Kokubo T, Bonfield W (1996) A-W glass–ceramic reinforced polyethylene composite for medical applications. Bioceramics 9:387

    Google Scholar 

  120. Wang M, Bonfield W, Li M, Guiu F (1996) Interphase in composite materials. Key Eng Mater 127:583

    Google Scholar 

  121. Guild FJ, Bonfield W (1993) Predictive modeling of hydroxyapatitepolyethylene composite. Biomaterials 14:985

    Article  Google Scholar 

  122. Bergman MA (1999) The clinical performance of ceramic inlays: a review. Aust Dent J 44:157

    Article  Google Scholar 

  123. Bonfield W (1987) Materials for the replacement of osteoarthritic hip joints. Met Mater 3:712

    Google Scholar 

  124. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposites synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705

    Article  Google Scholar 

  125. Reis RL, Cunha AM, Fernandes MH, Correia RN (1997) Bioinert and biodegradable polymeric matrix composites filled with bioactive SiO2-3CaO.P2O5-MgO glasses and glass–ceramics. In: Bioceramics Vol.10. Elsevier Science, pp 415–418 Paris, France

    Google Scholar 

  126. Sousa RA, Reis RL, Cunha AM, Bevis MJ (2000) Structure and properties of hydroxylapatite reinforced starch bone-analogue composites. Key Eng Mater 192–195:669

    Google Scholar 

  127. Ladizesky NH, Pirhonen EM, Appleyard DB, Ward IM, Bonfield W (1998) Fibre reinforcement of ceramic/polymer composites for a major load-bearing bone substitute material. Compos Sci Technol 58:419

    Article  Google Scholar 

  128. Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133

    Article  Google Scholar 

  129. Wang M, Bonfield W, Hench LL (1995) Bioglass/high density polyethylene composite as a new soft tissue bonding material. In: Wilson J, Hench LL, Greenspan D (eds) Bioceramics 10. Elsevier Science, Oxford

    Google Scholar 

  130. Wang M, Yue CY, Chua B, Kan LC (1999) Hydroxyapatite reinforced polysulfone as a new biomaterial for tissue replacement. Bioceramics 12:401

    Article  Google Scholar 

  131. Wang M, Yue CY, Chua B (2001) Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J Mater Sci Mater Med 12:821

    Article  Google Scholar 

  132. Wang M, Chua B (2002) Fatigue performance of a bioactive composite developed for hard tissue replacement. Bioceramics 15:935

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by the Indian Space Research Organization, India, for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cherusseri, J., Pramanik, S., Sowntharya, L., Pandey, D., Kar, K.K., Sharma, S.D. (2017). Polymer-Based Composite Materials: Characterizations. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_2

Download citation

Publish with us

Policies and ethics