Skip to main content

xAgl-(1-x)MPO3 [M = Ag, Li) Superionic Composite Glasses and Their Current Issues

  • Chapter
  • First Online:

Abstract

Superionic conductors are special class of materials, which conduct electricity via movement of ions. They are popular due to their various applications and for many physical phenomena, which are still to be understood fully. Phosphate glass is a good candidate in this category, and it is necessary to explore its practical application and rich science of super ionic conductors as they are easier to prepare and contain nontoxic elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tubandt C (1921) Electrical conduction in solid crystallized compounds. II. Transport and migration of the ions in simple solid electrolytes. Z Anorg Allgem Chem 115:105

    Article  Google Scholar 

  2. Strock LW (1934) Crystal structure of high-temperature silver iodide α-AgI. Z Phys Chem B 25:411

    Google Scholar 

  3. Strock LW (1935) Additions and corrections to: crystal structure of the high-temperature silver iodide α-AgI. Z Phys Chem B 31:132

    Google Scholar 

  4. O’Keeffe M, Hyde BG (1976) The solid electrolyte transition and melting in salts. Philos Mag 33:219

    Article  Google Scholar 

  5. Tubandt C (1932) Handbuch der Experimental Physik. Akad. Verlagsgesellschaft, Leipzig, vol 12(1), p 383

    Google Scholar 

  6. Boolchand P, Bresser WJ (2001) Mobile silver ions and glass formation in solid electrolytes. Nature 410(6832):1070

    Article  Google Scholar 

  7. Boyce JB, Huberman BA (1979) Superionic conductors: transitions, structures, dynamics. Phys Rep 51(4):189

    Article  Google Scholar 

  8. Bradley JN, Greene PD (1976) Solids with high ionic conductivity in group 1 halide systems. Trans Faraday Soc 63:424

    Article  Google Scholar 

  9. Owens BB, Argue GR (1967) High-conductivity solid electrolytes: MAg4I5. Science 157:308

    Article  Google Scholar 

  10. Takahashi T, Yamamoto O (1964) Solid electrolyte cell III. The conductivity of solid electrolytes. 3. The conductivity of Ag3SI. Denki Kgaku 32(8):610

    Google Scholar 

  11. Suchow L, Pond GR (1953) Electrical conductivity of Ag2HgI4, Cu2HgI4 and their eutectoid. J Am Chem Soc 75(21):5242

    Article  Google Scholar 

  12. Shahi K, Chandra S (1975) Electrical conductivity and thermoelectric power of Ag6I4WO4 solid electrolyte. Phys Status Solidi A 28(2):653

    Article  Google Scholar 

  13. Huggins RA (1977) Recent results on lithium ion conductors. Electrochim Acta 22:773

    Article  Google Scholar 

  14. Kvist A, Lunden A (1965) Electrical conductivity of solid and molten Li2SO4 Z Naturf 20A:235

    Google Scholar 

  15. Kamaya N et al. (2011) A lithium superionic conductor. Nat Mater 10(9):682

    Article  Google Scholar 

  16. Tatsumisago M, Shinkuma Y, Minami T (1991) Stabilization of superionic a-AgI at room temperature in a glass matrix. Nature 354(21):217

    Article  Google Scholar 

  17. West AR (2003) Solid state chemistry and its applications. Wiley, New Delhi

    Google Scholar 

  18. Pradel A, Ribes M (1986) Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching. Solid State Ionics 18–19, Part 1(0): 351 (1986)

    Google Scholar 

  19. Julien C, Nazri GA (1994) Solid state batteries: materials design and optimization. Kluwer Academic Publications, Boston

    Google Scholar 

  20. Kikkawa S, Miyai T, Koizumi M (1988) New lithium ionic conductor, Li-Ge-Se glasses. Solid State Ionics 28–30(Part 1):743

    Article  Google Scholar 

  21. Kennedy JH, Zhang Z (1988) Improved stability for the SiS2-P2S5-Li2S-LiI glass system. Solid State Ionics 28–30(Part 1):726

    Article  Google Scholar 

  22. Malugani JP, Robert G (1980) Preparation and electrical properties of the 0,37Li2S-0,18P2S5-0,45LiI glass. Solid State Ionics 1(5-6):519

    Article  Google Scholar 

  23. Minami T, Imazawa K, Tanaka M (1977) Superionic conducting glasses: glass formation and conductivity in the AgI-Ag2O-P2O5 system. J Electrochem Soc 124(11):1659

    Article  Google Scholar 

  24. Magistris A, Chiodelli G, Schiraldi A (1979) Formation of high conductivity glasses in the system AgI – Ag2O – B2O3. Electrochim Acta 24(2):203

    Article  Google Scholar 

  25. Minami T and Tanaka M (1980) Structure and ionic transport of superionic conducting glasses in the system AgI – Ag2O – MoO3. J Non-Cryst Solids 38–39, Part 1(0): 289

    Google Scholar 

  26. Hariharan K, Kaushik R (1987) The superionic Agl-Ag2O-V2O5 system: electrical conductivity studies on glass and polycrystalline forms. J Mater Sci 22(9):3335

    Article  Google Scholar 

  27. Grant RJ et al. (1978) Optimized ionic conductivity in glass:vitreous silver arsenate iodide (Ag7I4AsO4) electrolytes. J Phys Chem 82(26):2838

    Article  Google Scholar 

  28. Tuller HL, Button DP, Uhlmann DR (1980) Fast ion transport in oxide glasses. J Non-Cryst Solids 40(1–3):93

    Article  Google Scholar 

  29. Sun HW et al. (1987) Physical and chemical characterization and ionic conductivity of rapidly quenched glasses in the Sb2S3-Ag2S-AgI system. J Solid State Chem 70(1):141

    Article  Google Scholar 

  30. Singh DP, Shahi K, Kar KK (2013) Scaling behavior and nearly constant loss effect in AgI-LiPO3 composite glasses. Solid State Ionics 231:102

    Article  Google Scholar 

  31. Malugani JP et al. (1978) Electrical conductivity and Raman diffusion spectra of mixed glasses silver metaphosphate-MI2 (M = Cd, Hg, Pb): Correlation between conductivity and structure. Mater Res Bull 13(10):1009

    Article  Google Scholar 

  32. Malugani JP et al. (1978) Ion conductivity in silver metaphosphate-AgX glasses (X = I, Br, Cl). Mater Res Bull 13(5):427

    Article  Google Scholar 

  33. Nocun M (2004) Structural studies of phosphate glasses with high ionic conductivity. J Non-Cryst Solids 333(1):90

    Article  Google Scholar 

  34. Borsa F et al. (1992) Relaxation and fluctuations in glassy fast-ion conductors: wide-frequency-range NMR and conductivity measurements. Phys Rev B 46(2):795

    Article  Google Scholar 

  35. Chowdari BVR et al. (1995) Electrical and structural studies of lithium fluorophosphate glasses. Solid State Ionics 76(3–4):189

    Article  Google Scholar 

  36. Winter R, Siegmund K, Heitjans P (1997) Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10. J Non-Cryst Solids 212(2–3):215

    Article  Google Scholar 

  37. Bardi U, Caporali S, Tolstogouzov A (2009) Study on sublimation of solid electrolyte (AgI)05-(AgPO3)05 with Knudsen effusion mass spectrometry. Rapid Commun Mass Spectrom 23(1):147

    Article  Google Scholar 

  38. Mukherjee PK et al. (2007) Giant dielectric permittivity in aligned silver nanowires grown within (AgI)(AgPO3) glasses. J Phys Chem C 111(10):3914

    Article  Google Scholar 

  39. Guo HX et al. (2007) Resistive switching devices based on nanocrystalline solid electrolyte (AgI)05(AgPO3)05. Appl Phys Lett 91(24):243513

    Article  Google Scholar 

  40. Liang C et al. (2007) Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina template. J Appl Phys 102(12):124308

    Article  Google Scholar 

  41. Hsu KH et al. (2007) Electrochemical nanoimprinting with solid-state superionic stamps. Nano Lett 7(2):446

    Article  Google Scholar 

  42. Matic A, Borjesson L (1998) Structure and dynamics of phosphate glasses. Philos Mag B 77(2):357

    Article  Google Scholar 

  43. Tatsumisago M et al. (1992) Formation of frozen a-AgI in superionic glass matrices at ambient temperature by rapid quenching. Solid State Ionics 50(3–4):273

    Article  Google Scholar 

  44. Bartholomew RF (1972) Structure and properties of silver phosphate glasses – infrared and visible spectra. J Non-Cryst Solids 7(3):221

    Article  Google Scholar 

  45. Galeener FL, Mikkelsen JC (1979) The Raman spectra and structure of pure vitreous P2O5. Solid State Commun 30(8):505

    Article  Google Scholar 

  46. Malugani J-P, Mercier R (1984) Vibrational properties of and short range order in superionic glasses AgPO3-AgX (X = I, Br, Cl). Solid State Ionics 13(4):293

    Article  Google Scholar 

  47. Condrate RA (1986) Vibrational spectra of structural units in glass. J Non-Cryst Solids 84(1–3):26

    Article  Google Scholar 

  48. Fontana A, Rocca F, Tomasi A (1990) Light scattering in AgI containing superionic glasses. J Non-Cryst Solids 123(1–3):230

    Article  Google Scholar 

  49. Benassi P et al. (1991) Light scattering in superionic glasses (AgI)x(AgPO3)1-x: Brillouin and Raman scattering. Phys Rev B 43(2):1756

    Article  Google Scholar 

  50. Koo J, Bae BS, Na HK (1997) Raman spectroscopy of copper phosphate glasses. J Non-Cryst Solids 212(2–3):173

    Article  Google Scholar 

  51. Hudgens JJ et al. (1998) Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J Non-Cryst Solids 223(1–2):21

    Article  Google Scholar 

  52. Efimov AM (1999) Vibrational spectra, related properties and structure of inorganic glasses. J Non-Cryst Solids 253(1–3):95

    Article  Google Scholar 

  53. Swenson J et al. (2000) Experimental insight into the mixed mobile ion effect in glasses. Solid State Ionics 136–137:1055

    Article  Google Scholar 

  54. Uchino T, Yoko T (2000) Structure and vibrational properties of alkali phosphate glasses from ab initio molecular orbital calculations. J Non-Cryst Solids 263–264:180

    Article  Google Scholar 

  55. Rossi F, Fontana A, Righetti L (2002) Temperature behaviour of quasielastic scattering in silver phosphate glass. Philos Mag B 82(3):323

    Article  Google Scholar 

  56. Metwalli E et al. (2004) Properties and structure of copper ultraphosphate glasses. J Non-Cryst Solids 344(3):128

    Article  Google Scholar 

  57. Doweidar H et al. (2007) Infrared spectra of Fe2O3-PbO-P2O5 glasses. Vib Spectrosc 37:91 (2005)

    Article  Google Scholar 

  58. Boolchand P, et al. Raman scattering as a probe of intermediate phases in glassy networks. J Raman Spectrosco 38, 660

    Google Scholar 

  59. Novita DI, Boolchand P (2007) Synthesis and structural characterization of dry AgPO3 glass by Raman scattering, infrared reflectance and modulated differential scanning calorimetry. Phys Rev B 76(18):184205

    Article  Google Scholar 

  60. Padmaja G, Kistaiah P (2009) Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect. J Phys Chem A 113(11):2397

    Article  Google Scholar 

  61. Money BK, Hariharan K (2010) Phase dependent heterogeneous dynamics of Li+ ion in LiPO3 based systems. Integr Ferroelectr 120:75

    Article  Google Scholar 

  62. Santagneli SH et al. (2011) Structural investigations of tungsten silver phosphate glasses by solid state NMR, vibrational and X-ray absorption near edge spectroscopies. J Non-Cryst Solids 357(10):2126

    Article  Google Scholar 

  63. Kalampounias AG (2012) Short-time vibrational dynamics of metaphosphate glasses. J Phys Chem Solids 73(2):148

    Google Scholar 

  64. Novita DI et al. (2007) Fast-ion conduction and flexibility of glassy networks. Phys Rev Lett 98(19):195501

    Article  Google Scholar 

  65. Konidakis I, Varsamis CP, Kamitsos EI (2011) Effect of synthesis method on the structure and properties of AgPO3-based glasses. J Non-Cryst Solids 357(14):2684

    Article  Google Scholar 

  66. Musinu A, Piccaluga G, Pinna G (1988) Short range order in AgI–AgPO3 glasses by X-ray diffraction. J Chem Phys 89(2):1074

    Article  Google Scholar 

  67. Takahashi H, Matsubara E, Waseda Y (1994) Structural study of superionic conducting glasses Agl-AgPO3 by X-ray diffraction. J Mater Sci 29(9):2536

    Article  Google Scholar 

  68. Thazin A et al. (2004) Effective Debye-Waller temperature parameter in superionic conducting AgI-AgPO3 glasses. Solid State Ionics 175(1–4):675

    Article  Google Scholar 

  69. Dianoux AJ, et al. (1991) Neutron scattering by superionic conductor glasses. J Non-Cryst Solids 131–133, Part 2(0): 973

    Google Scholar 

  70. Rousselot C et al. (1991) Characterization of intermediate-range order in superionic AgPO3-AgX (X = I, Br, Cl) glasses by neutron diffraction. Solid State Ionics 44(3–4):151

    Article  Google Scholar 

  71. Wicks JD et al. (1995) Structure and ionic conduction in (AgI)x(AgPO3)1-x glasses. Phys Rev Lett 74(5):726

    Article  Google Scholar 

  72. Matic A et al. (1999) Ionic motion of silver in super-ionic glasses. Physica B 266(1–2):69

    Article  Google Scholar 

  73. Kartini E, Collins MF (2000) Nature of the precipitate in (AgI)07(AgPO3)03 glass. Physica B 276–278:467

    Article  Google Scholar 

  74. Kartini E et al. (2000) Neutron scattering from the superionic glasses (AgI)x(AgPO3)1-x, through the glass transition. Solid State Ionics 138(1–2):115

    Article  Google Scholar 

  75. Kartini E et al. (2000) Anomalous temperature dependence of the first diffraction peak in the superionic glass (AgI)x(AgPO3)1-x. Phys Rev B 61(2):1036

    Article  Google Scholar 

  76. Kartini E et al. (2004) Anion effect on the structure of Ag2S-AgPO3 superionic glasses. Solid State Ionics 167(1–2):65

    Article  Google Scholar 

  77. Nakamura M, et al. (2006) Low energy vibrational excitations characteristic of superionic glass. Physica B 385–386, Part 1(0): 552

    Google Scholar 

  78. Aniya M (2008) Medium range structure and power law conductivity dispersion in superionic glasses. J Non-Cryst Solids 354(2–9):365

    Article  Google Scholar 

  79. Gunawan M, Kartini E, Putra EGR (2008) Small angle neutron scattering experiments on solid electrolyte (AgI)x(AgPO3)1-x. J Solid State Electrochem 12(7–8):903

    Article  Google Scholar 

  80. Sanson A et al. (2008) Correlation between I-Ag distance and ionic conductivity in AgI fast-ion-conducting glasses. Phys Rev Lett 101(15):155901

    Article  Google Scholar 

  81. Tomasi C et al. (2001) Electric, thermodynamic and NMR evidence of anomalies in (x)AgI(1-x)AgPO3 glasses. J Non-Cryst Solids 293–295:785

    Article  Google Scholar 

  82. Tachez M et al. (1987) Structure determination of AgPO3 and (AgPO3)05(AgI)05 glasses by neutron diffraction and small angle neutron scattering. Solid State Ionics 25(4):263

    Article  Google Scholar 

  83. Borjesson L, McGreew RL, Howels WS (1992) Fractal aspects of superionic glasses from reverse Monte Carlo simulations. Philos Mag B 65(2):261

    Article  Google Scholar 

  84. Adams S, Swenson J (2000) Determining ionic conductivity from structural models of fast ionic conductors. Phys Rev Lett 84(18):4144

    Article  Google Scholar 

  85. Aniya M (2000) Average electronegativity, medium-range-order and ionic conductivity in superionic glasses. Solid State Ionics 136–137:1085

    Article  Google Scholar 

  86. Angell CA (1990) Dynamic processes in ionic glasses. Chem Rev 90(3):523

    Article  Google Scholar 

  87. Roling B, Martiny C, Bruckner S (2001) Ion transport in glass: influence of glassy structure on spatial extent of nonrandom ion hopping. Phys Rev B 63(21):214203

    Article  Google Scholar 

  88. Funke K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111

    Article  Google Scholar 

  89. Jonscher AK (1977) The ‘universal’ dynamic response. Nature 267:673

    Article  Google Scholar 

  90. Almond DP, West AR (1983) Anomalous conductivity prefactors in fast ion conductors. Nature 306(5942):456

    Article  Google Scholar 

  91. Murugavel S, Roling B (2004) Ionic transport in glassy networks with high electronic polarizabilities: conductivity spectroscopic results indicating a vacancy-type transport mechanism. J Phys Chem B 108(8):2564

    Article  Google Scholar 

  92. Almond DP, Duncan GK, West AR (1983) The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 8(2):159

    Article  Google Scholar 

  93. Cutroni M et al. (2002) Ionic conduction and dynamical regimes in silver phosphate glasses. J Non-Cryst Solids 307–310:963

    Article  Google Scholar 

  94. Murugavel S, Roling B (2007) Ion transport mechanism in borate glasses: influence of network structure on non-Arrhenius conductivity. Phys Rev B 76(18):180202

    Article  Google Scholar 

  95. Murugavel S et al. (2010) Ion transport mechanism in glasses: non-arrhenius conductivity and nonuniversal features. J Phys Chem B 114(42):13381

    Article  Google Scholar 

  96. Dyre JC et al. (2009) Fundamental questions relating to the ion conduction in disordered solids. Rep Prog Phys 72:046501

    Article  Google Scholar 

  97. Almond DP and West AR (1983) Mobile ion concentrations in solid electrolytes from an analysis of ac conductivity. Solid State Ionics 9–10, Part 1(0): 277

    Google Scholar 

  98. Rivera A, Sanz J (2004) Lithium dynamics in the fast ionic conductor Li018La061TiO3 probed by 7Li NMR spectroscopy. Phys Rev B 70(9):094301

    Article  Google Scholar 

  99. Ingram MD, Moynihan CT and Lesikar AV (1980) Ionic conductivity and the weak electrolyte theory of glass. J Non-Cryst Solids 38–39, Part 1(0) 371

    Google Scholar 

  100. Bohnke O, Bohnke C, Fourquet JL (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics 91(1–2):21

    Article  Google Scholar 

  101. Dyre JC (2003) Is there a native band gap in ion conducting glasses? J Non-Cryst Solids 324(1–2):192

    Article  Google Scholar 

  102. Sidebottom DL (2009) Colloquium: understanding ion motion in disordered solids from impedance spectroscopy scaling. Rev Mod Phys 81(3):999

    Article  Google Scholar 

  103. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80

    Article  Google Scholar 

  104. Lee WK, Lie JF, Nowick AS (1991) Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys Rev Lett 67(12):1559

    Article  Google Scholar 

  105. Nowick AS, Lim BS, Vaysleyb AB (1994) Nature of the ac conductivity of ionically conducting crystals and glasses. J Non-Cryst Solids 172–174(Part 2):1243

    Article  Google Scholar 

  106. Lu X, Jain H (1994) Low temperature AC conductivity of oxide glasses. J Phys Chem Solids 55(12):1433

    Article  Google Scholar 

  107. Laughman DM, Banhatti RD, Funke K (2010) New nearly constant loss feature detected in glass at low temperatures. Phys Chem Chem Phys 12(42):14102

    Article  Google Scholar 

  108. Burns A et al (1989) Dielectric spectra of ionic conducting oxide glasses to 2 GHz. Phys Chem Glasses 30:264

    Google Scholar 

  109. Elliott SR (1978) On the super-linear frequency dependent conductivity of amorphous semiconductors. Solid State Commun 28(11):939

    Article  Google Scholar 

  110. Tiwari JP, Shahi K (2007) Super-linear frequency dependence of ac conductivity of disordered Ag2S–Sb2S3 at cryogenic temperatures. Philos Mag 87(29):4475

    Article  Google Scholar 

  111. Roling B, Martiny C, Murugavel S (2001) Ionic conduction in glass: new information on the interrelation between the Jonscher behavior and the nearly constant-loss behavior from broadband conductivity spectra. Phys Rev Lett 87(8):085901

    Article  Google Scholar 

  112. Murugavel S, Roling B (2003) Nearly constant dielectric loss of glasses containing different mobile alkali ions. J Non-Cryst Solids 330(1–3):122

    Article  Google Scholar 

  113. Sidebottom DL (2005) Constriction effect in the nearly constant loss of alkali metaphosphate glasses. Phys Rev B 71(13):134206

    Article  Google Scholar 

  114. Leon C et al. (2002) Comment on ionic conduction in glass: new information on the interrelation between the ‘Jonscher behavior’ and the ‘nearly constant-loss behavior’ from broadband conductivity spectra. Phys Rev Lett 89(7):079601

    Article  Google Scholar 

  115. Nowick AS, Vaysleyb AB, Liu W (1998) Identification of distinctive regimes of behaviour in the ac electrical response of glasses. Solid State Ionics 105(1–4):121

    Article  Google Scholar 

  116. Sidebottom DL (2000) Influence of cation constriction on the ac conductivity dispersion in metaphosphate glasses. Phys Rev B 61(21):14507

    Article  Google Scholar 

  117. Leon C, Lunkenheimer P, Ngai KL (2001) Test of universal scaling of ac conductivity in ionic conductors. Phys Rev B 64(18):184304

    Article  Google Scholar 

  118. Leon C et al. (2001) Origin of constant loss in ionic conductors. Phys Rev Lett 86(7):1279

    Article  Google Scholar 

  119. Leon C et al. (2002) Crossover of near-constant loss to ion hopping relaxation in ionically conducting materials: experimental evidences and theoretical interpretation. J Non-Cryst Solids 305(1–3):88

    Article  Google Scholar 

  120. Ngai KL, Casaline R (2002) Near-constant loss and the loss from cooperative ion hopping in ionic conductors are not additive contributions. Phys Rev B 66(13):132205

    Article  Google Scholar 

  121. Ngai KL, Lenon C (2002) Cage decay, near constant loss and crossover to cooperative ion motion in ionic conductors: Insight from experimental data. Phys Rev B 66(6):064308

    Article  Google Scholar 

  122. Ngai KL, Wang Y, Moynihan CT (2002) The mixed alkali effect revisited: the importance of ion-ion interactions. J Non-Cryst Solids 307–310:999

    Article  Google Scholar 

  123. Rivera A et al. (2002) Crossover from ionic hopping to nearly constant loss in the fast ionic conductor Li018La061TiO3. Phys Rev B 65(22):224302

    Article  Google Scholar 

  124. Rivera A et al. (2002) Cation mass dependence of the nearly constant dielectric loss in alkali triborate glasses. Phys Rev Lett 88(12):125902

    Article  Google Scholar 

  125. Banhatti RD et al. (2011) Nearly constant loss effect in sodium borate and silver meta-phosphate glasses: new insights. Solid State Ionics 192(1):70

    Article  Google Scholar 

  126. Ngai KL et al. (2003) A combined molecular dynamics simulation, experimental and coupling model study of the ion dynamics in glassy ionic conductors. J Phys Condens Mat 15(16):S1607

    Article  Google Scholar 

  127. Rivera A et al. (2003) Temperature dependence of the near constant loss in ionic conductors: a coupling model approach. J Phys Condens Mat 15(16):S1633

    Article  Google Scholar 

  128. Leon C, Ngai KL, Rivera A (2004) Correlation between ion hopping conductivity and near constant loss in ionic conductors. Phys Rev B 69(13):134303

    Article  Google Scholar 

  129. Diaz-Guillen MR et al. (2010) Crossover to nearly constant loss in ac conductivity of highly disordered pyrochlore-type ionic conductors. Phys Rev B 82(17):174304

    Article  Google Scholar 

  130. Rizos AK et al. (2001) Near constant loss in glassy and crystalline LiAlSi2O6 from conductivity relaxation measurements. J Chem Phys 114(2):931

    Article  Google Scholar 

  131. Ngai KL, Strom U (1988) High-frequency dielectric loss of Na b-alumina: evidence for relaxation crossover. Phys Rev B 38(15):10350

    Article  Google Scholar 

  132. Leon C et al. (1998) Universal scaling of the conductivity relaxation in crystalline ionic conductors. Phys Rev B 57(1):41

    Article  Google Scholar 

  133. Ke S et al. (2010) Crossover from a nearly constant loss to a superlinear power-law behavior in Mn-doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ferroelectrics. J Appl Phys 107(8):084112

    Article  Google Scholar 

  134. Funke K et al. (1981) Diffusion dynamics in AgI-type solid electrolytes. Solid State Ionics 3–4:45

    Article  Google Scholar 

  135. Funke K (1982) A simple non-hopping model for the self-diffusion of the silver ions in the network of <100> channels in a-Ag2Se. Solid State Ionics 6(1):93

    Article  Google Scholar 

  136. Funke K et al. (1983) On the microwave conductivity of a-AgI part I: the effect of sample preparation. Solid State Ionics 11(3):247

    Article  Google Scholar 

  137. Funke K, Schneider H (1984) Ionic conductivity of a-RbAg4I5 up to far-infrared frequencies. Solid State Ionics 13(4):335

    Article  Google Scholar 

  138. Funke K and Hoppe R (1990) Jump-relaxation model yields Kohlrausch-Williams-Watts behaviour. Solid State Ionics 40–41, Part 1(0): 200

    Google Scholar 

  139. Funke K, et al. (1990) Hopping and non-hopping localized ionic motion: b-AgI and b-Ag3SI. Solid State Ionics 40–41, Part 1(0): 275

    Google Scholar 

  140. Funke K, et al. (1992) Jump relaxation in RbAg4I5 by dynamic conductivity and quasielastic neutron scattering. Solid State Ionics 53–56, Part 2(0): 947

    Google Scholar 

  141. Funke K et al. (1996) Ionic and polaronic glassy conductors: conductivity spectra and implications for ionic hopping in glass. Solid State Ionics 85(1–4):293

    Article  Google Scholar 

  142. Funke K, et al. (1996) On the dynamics of frenkel defect formation and ionic hopping in AgCl, AgBr and b-AgI. Solid State Ionics 86–88, Part 1(0): 141

    Google Scholar 

  143. Funke K (1997) Ion transport in fast ion conductors – spectra and models. Solid State Ionics 94(1–4):27

    Article  Google Scholar 

  144. Funke K, Roling B, Lange M (1998) Dynamics of mobile ions in crystals, glasses and melts. Solid State Ionics 105(1–4):195

    Article  Google Scholar 

  145. Funke K, Wilmer D (2000) Concept of mismatch and relaxation derived from conductivity spectra of solid electrolytes. Solid State Ionics 136–137:1329

    Article  Google Scholar 

  146. Funke K (2002) Ionic motion in materials with disordered structures. Phys Chem Chem Phys 4(14):vii–14

    Article  Google Scholar 

  147. Funke K et al. (2002) Ionic motion in materials with disordered structures: conductivity spectra and the concept of mismatch and relaxation. Phys Chem Chem Phys 4(14):3155

    Article  Google Scholar 

  148. Funke K et al. (2002) Dynamics of mobile ions in crystals, glasses and melts, described by the concept of mismatch and relaxation. Solid State Ionics 154–155:65

    Article  Google Scholar 

  149. Banhatti RD, Fuke K (2004) Dielectric function and localized diffusion in ion conducting glasses. Solid State Ionics 175(1–4):661

    Article  Google Scholar 

  150. Funke K, Banhatti RD (2004) Modelling frequency-dependent conductivities and permittivities in the framework of the migration concept. Solid State Ionics 169(1–4):1

    Article  Google Scholar 

  151. Funke K, Ross I, Banhatti RD (2004) Nearly constant loss behavior in g-RbAg4I5: microwave conductivity plateau identified. Solid State Ionics 175(1–4):819

    Article  Google Scholar 

  152. Funke K, Banhatti RD, Cramer C (2005) Correlated ionic hopping processes in crystalline and glassy electrolytes resulting in migration-type and nearly-constant-loss-type conductivities. Phys Chem Chem Phys 7(1):157

    Article  Google Scholar 

  153. Funke K, Banhatti RD (2006) Ionic motion in materials with disordered structures. Solid State Ionics 177(19–25):1551

    Article  Google Scholar 

  154. Funke K, Singh P, Banhatti RD (2007) Conductivity dispersion in supercooled calcium potassium nitrate: caged ionic motion viewed as part of standard behaviour. Phys Chem Chem Phys 9(41):5582

    Article  Google Scholar 

  155. Laughman DM, Banhatti RD, Funke K (2009) Nearly constant loss effects in borate glasses. Phys Chem Chem Phys 11(17):3158

    Article  Google Scholar 

  156. Dieterich W, Philipp M (2002) Non-debye relaxations in disordered ionic solids. Chem Phys 284(1–2):439

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by the Council of Scientific and Industrial Research (CSIR), India, for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, D.P., Sowntharya, L., Shahi, K., Kar, K.K. (2017). xAgl-(1-x)MPO3 [M = Ag, Li) Superionic Composite Glasses and Their Current Issues. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_16

Download citation

Publish with us

Policies and ethics