Skip to main content

Advanced Carbon–Carbon Composites: Processing Properties and Applications

  • Chapter
  • First Online:
Composite Materials

Abstract

Carbon–carbon composites (C/Cs) are of significant technological importance in various advanced applications, owing to their unique mechanical and thermal properties. C/Cs are composed of carbon fiber-reinforced carbon matrix. This chapter summarizes various aspects of C/Cs in terms of matrix and reinforcement precursors, fabrication of C/Cs and effects of various processing parameters on their mechanical and thermal properties, and their applications. Effects of processing parameters and architecture of carbon fiber reinforcement have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanter MA (1957) Diffusion of carbon atoms in natural graphite crystals. Phys Rev 107(3):655

    Article  Google Scholar 

  2. Dienes GJ (1952) Mechanism for self-diffusion in graphite. J Appl Phys 23(11):1194

    Article  Google Scholar 

  3. Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerenes- properties, processing and applications. Noyes Publications, Park Ridge

    Google Scholar 

  4. Burchell TD (1999) Carbon materials for advanced technologies, 1st edn. Elsevier, Oxford

    Google Scholar 

  5. Fitzer E, Manocha LM (1998) Carbon reinforcements and carbon/carbon composites. Springer, Germany

    Book  Google Scholar 

  6. Park SJ, Jang YS (2001) Interfacial characteristics and fracture toughness of electrolytically Ni plated carbon fiber-reinforced phenolic resin matrix composites. J Colloid Interface Sci 237(1):91

    Article  Google Scholar 

  7. Wielage B, Odeshi AG, Mucha H, Lang H, Buschbeck R (2003) A cost effective route for the densification of carbon-carbon composites. J Mater Process Technol 132(1):313

    Article  Google Scholar 

  8. Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca Raton

    Book  Google Scholar 

  9. Edie DD (1998) The effect of processing on the structure and properties of carbon fibres. Carbon 36(4):345

    Article  Google Scholar 

  10. Manocha LM (2001) Carbon fibres. In: Buschow KJ (ed) Encyclopedia of materials science and technology. Elsevier, Amsterdam/New York, p 906

    Chapter  Google Scholar 

  11. Lubin G (1990) Hand book of composites. Van Nostrand Reinhold Company, New York

    Google Scholar 

  12. Donnet JB, Wang TK, Reboulillat S, Peng JCM (1998) Carbon fibers, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  13. Ram MJ, Riggs JP (1972) Process for the production of acrylic filaments. US Patent 3657409

    Google Scholar 

  14. Buckley JD, Edie DD (1992) Carbon-carbon materials and composites. Noyes Publications, Park Ridge

    Google Scholar 

  15. Savage G (1993) Carbon-carbon composites. Chapman & Hall, London

    Book  Google Scholar 

  16. Clarke AJ, Bailey JE (1973) Oxidation of acrylic fibres for carbon fiber formation. Nature 243(5403):146

    Article  Google Scholar 

  17. Bahl OP, Manocha LM (1974) Characterization of oxidised PAN fibres. Carbon 12(4):417

    Article  Google Scholar 

  18. Fitzer E, Muller DJ (1975) The influence of oxygen on the chemical reactions during stabilization of PAN as carbon fiber precursor. Carbon 13(1):63

    Article  Google Scholar 

  19. Thorne DJ (1985) Manufacture of carbon fibre from PAN. In: Watt W, Perov BV (eds) Strong fibres. Elsevier, Amsterdam, p 475

    Google Scholar 

  20. Morita K, Miyachi H, Hiramatsu T (1981) Stabilization of acrylic fibers by sulfur atoms mechanism of stabilization. Carbon 19(1):11

    Article  Google Scholar 

  21. Riggs DM, Shuford RJ, Lewis RW (1982) Graphite fibers and composites. In: Lubin G (ed) Handbook of composites. Van Nostrand Reinhold Company, New York, p 196

    Chapter  Google Scholar 

  22. Diefendorf RJ, Tokarsky E (1975) High performance carbon fibers. Polym Eng Sci 15(3):150

    Article  Google Scholar 

  23. Singer LS (1977) High modulus high strength carbon fibers produced from mesophase pitch. US Patent 4005183

    Google Scholar 

  24. Diefendorf RJ, Riggs DM (1980) Forming optically anisotropic pitches. US Patent 4208267

    Google Scholar 

  25. Nazem FF (1982) Flow of molten mesophase pitch. Carbon 20(4):345

    Article  Google Scholar 

  26. Edie DD, Dunham MG (1989) Melt spinning of pitch-based carbon fibers. Carbon 27(5):647

    Article  Google Scholar 

  27. Tibbetts GG (1990) Vapor-grown carbon fibers. In: Figueiredo J, Bernardo CA, Baker RTK, Hiittenger KJ (eds) Carbon fibers filaments and composites. Kluwer, Dordrecht, p 79

    Google Scholar 

  28. Baker RTK (1990) Electron microscope studies of catalytic growth of carbon fibers. In: Figueiredo J, Bernardo CA, Baker RTK, Hiittenger KJ (eds) Carbon fibers filaments and composites. Kluwer, Dordrecht, p 405

    Chapter  Google Scholar 

  29. Scardino FL (1989) Introduction to textile structures. In: Chou TW, Ko FK (eds) Textile structural composites. Elsevier, New York, p 1

    Google Scholar 

  30. Ko FK (1989) Three-dimensional fabrics for structural composites. In: Chou TW, Ko FK (eds) Textile structural composites. Elsevier, Tokyo, p 129

    Google Scholar 

  31. McAllister LE, Lachman WL (1983) Multidirectional carbon-carbon composites. In: Kelly A, Mileiko ST (eds) Fabrication of composites. Elsevier, Amsterdam, p 109

    Google Scholar 

  32. Klein AJ (1986) Which weave to weave. Adv Mater Process 3:40

    Google Scholar 

  33. Tzeng SS, Chr Ya-ga (2002) Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis. Mater Chem Phys 73(2–3):162

    Google Scholar 

  34. Manocha LM (2005) Introduction of nanostructures in carbon–carbon composites. Mater Sci Eng A 412(1–2):27

    Article  Google Scholar 

  35. Diwedi H, Mathur RB, Dhami TL, Bhal OP, Monthioux M, Sharma SP (2006) Evidence for the benefit of adding a carbon interphase in an all-carbon composite. Carbon 44(4):699

    Article  Google Scholar 

  36. Manocha LM (2003) High performance carbon-carbon composites. Sadhana 28(1–2):349

    Article  Google Scholar 

  37. Kaae JL (1985) The mechanism of the deposition of pyrolytic carbons. Carbon 23(6):665

    Article  Google Scholar 

  38. Knop A, Pilato LA (1985) Phenolic resins chemistry applications and performance future directions. Springer, Berlin, p 91

    Google Scholar 

  39. Aierbea GA, Echeverrıab JM, Martina MD, Etxeberriac AM, Mondragona I (2000) Influence of the initial formaldehyde to phenol molar ratio (F/P) on the formation of a phenolic resol resin catalyzed with amine. Polymer 41(18):6797

    Article  Google Scholar 

  40. Mottram JT, Taylor R (1987) Thermal conductivity of fibre-phenolic resin composites. Part I: thermal diffusivity measurements. Compos Sci Technol 29(3):189

    Article  Google Scholar 

  41. Mottram JT, Taylor R (1987) Thermal conductivity of fibre-phenolic resin composites. Part II: numerical evaluation. Compos Sci Technol 29(3):211

    Article  Google Scholar 

  42. Wang S, Adanur S, Jang BJ (1997) Mechanical and thermo-mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites. Compos Part B 28(3):215

    Article  Google Scholar 

  43. Sreejith PS, Krisnamurthy R, Narayanasamy K, Malhotra SK (1999) Studies on the machining of carbon/phenolic ablative composites. J Mater Process Technol 88(1):43

    Article  Google Scholar 

  44. Sreejith PS, Krisnamurthy R, Malhotra SK, Narayanasamy K (2000) Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites. J Mater Process Technol 104(1–2):53

    Article  Google Scholar 

  45. Zhang ZZ, Su F-H, Wang K, Jiang W, Men X, Liu WM (2005) Study on frictional and wear properties carbon fabric composites reinforced with micro and nano particles. Mater Sci Eng A 404(1–2):251

    Article  Google Scholar 

  46. Kim SS, Park DC, Lee DG (2004) Characteristics of carbon fiber phenolic composites for journal bearing materials. Compos Struct 66(1–4):359

    Article  Google Scholar 

  47. Kim JW, Kim HG, Lee DG (2004) Compaction of thick carbon/phenolic fabric composites with autoclave method. Compos Struct 66(1–4):467

    Article  Google Scholar 

  48. Park DC, Lee DG (2005) Through-thickness compressive strength of carbon–phenolic woven composites. Compos Struct 70(4):403

    Article  Google Scholar 

  49. Park DC, Lee SM, Kim BC, Kim HS, Lee DG (2006) Development of heavy duty hybrid carbon–phenolic hemispherical bearings. Compos Struct 73(1):88

    Article  Google Scholar 

  50. Park DC, Kim SS, Kim BC, Lee SM, Lee DG (2006) Wear characteristics of carbon-phenolic woven composites mixed with nano-particles. Compos Struct 74(1):89

    Article  Google Scholar 

  51. White JL, Sheaffer PM (1989) Pitch-based processing of carbon-carbon composites. Carbon 27(5):697

    Article  Google Scholar 

  52. Fujiura R, Kojima K, Kanno K, Mochida I, Korai Y (1993) Evaluation of naphthalene-derived mesophase pitches as a binder for carbon-carbon composites. Carbon 31(1):97

    Article  Google Scholar 

  53. Fitzer E, Terwiesch B (1973) The pyrolysis of pitch and the baking of pitch bonded carbon/carbon composites under nitrogen pressure up to 100 bar. Carbon 11(5):570

    Article  Google Scholar 

  54. Marsh H, Menendez R (1989) Mechanisms of formation of isotropic and anisotropic carbons. In: Marsh H (ed) Introduction to carbon science. Butterworths, London, p 37

    Chapter  Google Scholar 

  55. Forrest MA, Marsh H (1983) The effects of pressure on the carbonization of pitch and pitch/carbon fibre composites. J Mater Sci 18(4):978

    Article  Google Scholar 

  56. Lewis IC (1982) Chemistry of carbonization. Carbon 20(6):519

    Article  Google Scholar 

  57. Lausevic Z, Marinkovic S (1986) Mechanical properties and chemistry of carbonization of phenol formaldehyde resin. Carbon 24(5):575

    Article  Google Scholar 

  58. Ko TH, Chen PC (1991) Study of the pyrolysis of phenolic resin reinforced with two-dimensional plain-woven carbon fabric. J Mater Sci Lett 10(5):301–303

    Article  Google Scholar 

  59. Roy AK (1993) Effect of carbonization rates on the interlaminar tensile stiffness and strength of two-dimensional carbon–carbon composites. Thermomechanical Behavior of Advanced Structural Materials ASME AD-vol34/AMD-vol173

    Google Scholar 

  60. Chang WC, Ma CCM, Tai NH, Chen CB (1994) Effect of processing methods and parameters on the mechanical properties and microstructure of carbon/carbon composites. J Mater Sci 29(22):5859

    Article  Google Scholar 

  61. Gupta A, Harrison IR (1994) Small-angle X-ray scattering (SAXS) in carbonized phenolic resins. Carbon 32(5):953

    Article  Google Scholar 

  62. Olsen RE, Reese HF, Backlund SJ (1997) Process for forming carbon–carbon composite. US Patent 5686027

    Google Scholar 

  63. Sastri SB, Armistead JP, Keller TM (1999) Carbon-based composites derived from phthalonitrile resins. US Patent 5965268

    Google Scholar 

  64. Howdayer M, Gieres SJ, Van TD (1984) Process for the densification of a porous structure. US Patent 4472454

    Google Scholar 

  65. Takabatake M (1990) Process for producing high strength carbon-carbon composite. US Patent 4975261

    Google Scholar 

  66. Upadhya K, Hoffaman PW (1995) Densification of porous articles by plasma enhanced chemical vapor infiltration. US Patent 5468357

    Google Scholar 

  67. Thurston SG, Suplinskas JR, Carroll JT, Connors FD, Scaringella DT, Krutent CR (1998) Method for densification of porous billets. US Patent 5733611

    Google Scholar 

  68. Sheehan JE (1999) Low temperature densification of carbon fiber performs by colloidal graphite impregnation and mechanical consolidation. US Patent 5993905

    Google Scholar 

  69. Withers CJ, Loutfy OR, Kowbel W, Bruce C, Vaidyanathan R (2000) Process of making carbon-carbon composites. US Patent 6051167

    Google Scholar 

  70. Bahl OP, Mathur RB, Dhami TL, Chauhan SK (2006) A single step process for the preparation of high density carbon-carbon composite material. Indian Patent 2005DE00567

    Google Scholar 

  71. Liu HL, Jin ZH, Hao ZB, Zeng XM (2007) Research of low cost preparation of carbon/carbon composites: chemical liquid deposition process. J Solid Rocket Technol 30(6):529

    Google Scholar 

  72. Huang D, Snyder D, Lewis TR, Lewis CI (2007) Manufacture of carbon-carbon composites by hot pressing. US Patent 7207424

    Google Scholar 

  73. Abali F, Shivkumar K, Hamidi N, Sadler R (2003) An RTM densification method of manufacturing carbon/carbon composites using primaset-P30 resin. Carbon 41(5):893

    Article  Google Scholar 

  74. Shivakumar NK, Avva SV, Sundarresan JM, Abali F, Cunningham A, Sadler LR (2008) Apparatus and method for forming densified carbon-carbon composites. US Patent 7332112

    Google Scholar 

  75. Weisshaus H, Kenig S, Sivegmann A (1991) Effect of materials and processing on the mechanical properties of C/C composites. Carbon 29(8):1203

    Article  Google Scholar 

  76. Fitzer E, Huttner W (1981) Structure and strength of carbon/carbon composites. J Phys D Appl Phys 14:347

    Article  Google Scholar 

  77. Fitzer E, Huttner W, Manocha LM (1980) Influence of process parameters on the mechanical properties of carbon/carbon-composites with pitch as matrix precursor. Carbon 18(4):291

    Article  Google Scholar 

  78. Bokoros JC, Walker PL (1969) Chemistry and physics of carbon. CRC Press, Boca Raton

    Google Scholar 

  79. Pierson HO, Liebermann ML (1975) The chemical vapor deposition of carbon on carbon fibers. Carbon 13(3):159–166

    Article  Google Scholar 

  80. Oh SM, Lee JY (1988) Structure of pyrolytic carbon matrices in carbon-carbon composites. Carbon 26(6):763

    Article  Google Scholar 

  81. Hatta H, Aoi T, Kawahara I, Kogo Y, Shiota I (2004) Tensile strength of carbon-carbon composites: I- effect of density. J Compos Mater 38(19):1667

    Article  Google Scholar 

  82. Hatta H, Aoi T, Kawahara I, Kogo Y (2004) Tensile strength of carbon-carbon composites: II- effect of heat treatment temperature. J Compos Mater 38(19):1685

    Article  Google Scholar 

  83. Hatta H, Goto K, Ikegaki S, Kawahara I, Aly-Hassan MS, Hamada H (2005) Tensile strength and fiber/matrix interfacial properties of 2-D and 3-D carbon/carbon composites. J Eur Ceram Soc 25(4):535

    Article  Google Scholar 

  84. Kogo Y, Kikkawa A, Saito W, Hatta H (2006) Comparative study on tensile fracture behavior of monofilament and bundle C/C composites. Compos Part A 37(12):2241

    Article  Google Scholar 

  85. Manocha LM, Yasuda E, Tanabe Y, Kimura S (1988) Effect of carbon fiber surface-treatment on mechanical properties of C/C composites. Carbon 26(3):333

    Article  Google Scholar 

  86. Manocha LM (1994) The effect of heat treatment temperature on the properties of polyfurfuryl alcohol based carbon-carbon composites. Carbon 32(2):213

    Article  Google Scholar 

  87. Kowbel W, Shan CH (1990) The mechanism of fiber/matrix interactions in carbon-carbon composites. Carbon 28(2–3):287

    Article  Google Scholar 

  88. Aglan MA (1993) The effect of intermediate graphitization on the mechanical and fracture behavior of 2-D C/C composites. Carbon 31(7):1121

    Article  Google Scholar 

  89. Manocha LM, Bahl OP (1988) Influence of carbon fiber type and weave pattern on the development of 2-D carbon-carbon composites. Carbon 26(1):13

    Article  Google Scholar 

  90. Zaldivar RJ, Rellick GS, Yang JM (1993) Fiber strength utilization in carbon-carbon composites. J Mater Res 8(3):501

    Article  Google Scholar 

  91. Algan H (1992) The effect of microstructural heterogeneities on the fracture behavior of 3-D carbon-carbon composites. J Mater Sci Lett 11(4):241

    Article  Google Scholar 

  92. Perry JL, Adams DF (1974) An experimental study of carbon-carbon composite materials. J Mater Sci 9(11):1764

    Article  Google Scholar 

  93. Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S (2006) Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites. Carbon 44(3):480

    Article  Google Scholar 

  94. Manocha LM, Warrier A, Manocha S, Sathiyamoorthy D, Banerjee S (2006) Thermophysical properties of densified pitch based carbon/carbon materials-II. Bidirectional composites. Carbon 44(3):488

    Article  Google Scholar 

  95. Nam JD, Seferis JC (1992) Initial polymer degradation as a process in the manufacture of carbon–carbon composites. Carbon 30(5):751

    Article  Google Scholar 

  96. Trick KA, Saliba TE (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33(11):1509–1515

    Article  Google Scholar 

  97. Trick KA, Saliba TE, Sandhu SS (1997) A kinetic model of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 35(3):393

    Article  Google Scholar 

  98. Dimitrienko YI (1997) Thermomechanical behavior of composite materials and structures under high temperatures: 1. Materials. Compos Part A 28(5):453

    Article  Google Scholar 

  99. Kowbel W, Chellapa V, Withers JC (1996) Properties of C/C composites produced in one low cost manufacturing step. Carbon 34(6):819

    Article  Google Scholar 

  100. Yasuda E, Tanabe Y, Manocha LM, Kimura S (1988) Matrix modification by graphite powder additives in carbon fiber/carbon composite with thermosetting resin precursor as a matrix. Carbon 26(2):225

    Article  Google Scholar 

  101. Ko TH, Kuo WS, Han WT, Day TC (2006) Modification of carbon/carbon composites with a thermosetting resin precursor as a matrix by addition of carbon black. J Appl Polym Sci 102(1):333

    Article  Google Scholar 

  102. Hu HL, Ko TH, Kuo WS (2005) Changes in the microstructure and characteristics of carbon/carbon composites with mesophase mesocarbon microbeads added during graphitization. J Appl Polym Sci 98(5):2178

    Article  Google Scholar 

  103. Chollona G, Sirona O, Takahashia J, Yamauchib K, Maedab K, Kosakab K (2001) Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition. Carbon 39(13):2065

    Article  Google Scholar 

  104. Aggarwal RK, Bhatia GJ (1978) Physical characteristics of baked carbon mixes employing coal tar and petroleum pitches. J Mater Sci 13(8):1632

    Article  Google Scholar 

  105. Menendez R, Fernandez JJ, Bermejo J, Cebolla V, Mochida I, Korai Y (1996) The role of carbon black/coal-tar pitch interactions in the early stage of carbonization. Carbon 34(7):895

    Article  Google Scholar 

  106. Seok JS, Hun KC, Jong HJ (2000) The improvement of interlaminar shear strength for low density 2-D carbon/carbon composites by additives. Polymer (Korea) 24(6):845

    Google Scholar 

  107. Manocha LM, Manocha S, Raj R, Yasuda E, Tanabe Y (2005) Effect of nanosized additives in carbonaceous precursors on microstructure of thermosetting resin based carbon-carbon composites. In: Singh M (ed) Proceedings of the international conference on high temperature ceramic matrix composites (HTCMC 5). American Ceramic Society Publication, Westerville, p 137

    Google Scholar 

  108. Jain R, Vaidya KU, Haque A (2006) Processing and characterization of carbon-carbon nanofiber composites. Adv Compos Mater 15(2):211

    Article  Google Scholar 

  109. Dae SL, Jeong WA, Hwack JL (2002) Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites. Wear 252(5–6):512–517

    Google Scholar 

  110. Chen J, Xiong X, Xiao P (2009) The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites. Solid State Sci 11(11):1890–1893

    Article  Google Scholar 

  111. Sheikhaleslami MS, Golestanifard F, Sarpoolaky H (2009) Method of preparing phenolic resin/carbon nano materials (hybrid resin). US Patent 0318606

    Google Scholar 

  112. Li JS, Luo RY, Ma TT, Bai SL (2006) Effect of carbon nanofibers additive on densification and mechanical properties of carbon/carbon composites. Tansu Jishu Bianjibu Publ 25(4):1–5

    Google Scholar 

  113. Jinsong L, Ruiying L (2008) Study of the mechanical properties of carbon nanofiber reinforced carbon-carbon composites. Compos Part A 39(11):1700

    Article  Google Scholar 

  114. Ferriera JR, Coppini NL, Levy NF (2001) Characteristics of carbon-carbon composite turning. J Mater Process Technol 109(1–2):65

    Article  Google Scholar 

  115. Mueller J, Brophy JR, Brown DK (1995) Endurance testing and fabrication of advanced 15 cm and 30 cm carbon-carbon composite grids. In: AIAA 95-2660 31st AIAA/ASME/SAE/ASEE Joint propulsion conference and exhibit, San Diego

    Google Scholar 

  116. Mueller J, Brophy JR, Brown DK (1996) Design fabrication and testing of 30 cm diameter dished carbon-carbon ion engine grids. In: AIAA 96-3204 32nd AIAA/ASME/SAE/ASEE Joint propulsion conference and exhibit, Lake Buena Vista

    Google Scholar 

  117. Gureev MD, Kuznetsov SI, Petrov AL (1999) Laser beam pattern cutting carbon based composites. J Russ Laser Res 20(4):349

    Article  Google Scholar 

  118. Hocheng H, Guu YH, Tai NH (1998) The feasibility analysis of electrical discharge machining of carbon-carbon composites. Mater Manuf Process 13(1):117

    Article  Google Scholar 

  119. George PM, Raghunath BK, Manocha LM, Warrier AM (2004) Modeling and machinability parameters of carbon-carbon composites a response surface approach. J Mater Process Technol 153–154:920

    Article  Google Scholar 

  120. George PM, Raghunath BK, Manocha LM, Warrier AM (2004) EDM machining of carbon-carbon composite- a Taguchi approach. J Mater Process Techol 145(1):66

    Article  Google Scholar 

  121. Fitzer E (1987) The future of carbon-carbon composites. Carbon 25(2):163

    Article  Google Scholar 

  122. Curry DM (1988) Carbon-carbon materials development and flight certification experience from space shuttle. In: Howard GM (ed) Oxidation-resistant carbon-carbon composites for hypersonic vehicle applications. NASA CP-2051, Washington, DC, p 29

    Google Scholar 

  123. Martin J (1988) Creating the platform of the future NASA-The national aerospace plane. Def Sci 7(9):55

    Google Scholar 

  124. Dulera IV, Sinha RK (2008) High temperature reactors. J Nucl Mater 383:183

    Article  Google Scholar 

  125. Burchell TD (2001) Carbon materials for energy production and storage. In: Rand B et al (eds) Design and control of structure of advanced carbon materials for enhanced performance. NATO series E, vol. 374, Kluwer Academic Publishers, Antalya, Turkey, pp 277–294

    Google Scholar 

  126. Marsden BJ (1998) Irradiation damage in graphite (The works of Professor B.T. Kelly). In: Graphite moderator lifecycle behavior. Proceedings of a specialists meeting, IAEA-TECDOC-901, Bath, United Kingdom, p-32.

    Google Scholar 

  127. Dasgupta K, Roy M, Tyagi AK, Kulshrestha SK, Venugopalan R, Sathiyamoorthy D (2007) Novel isotropic high density amorphous carbon composite for moderator application in low temperature thermal reactors. Compos Sci Technol 67:1794

    Article  Google Scholar 

  128. Dasgupta K, Barat P, Sarkar A, Mukherjee P, Sathiyamoorthy D (2007) Stored energy release behaviour of disordered carbon. Appl Phys A 87:721

    Article  Google Scholar 

  129. Dasgupta K, Prakash J, Tripathi BM (2014) Novel low Wigner energy amorphous carbon-carbon composite. J Nucl Mater 445:72

    Article  Google Scholar 

  130. Taylor A (1989) Fabrication and performance of advanced carbon-carbon piston structures. In: Buckley JD (ed) Fiber-Tex 1988. NASA CP-3038, Washington, DC, p 375

    Google Scholar 

  131. Claes L, Fitzer E, Hiittner W, Kinzl L (1980) Torsional strength of carbon fiber reinforced composites for the application as internal bone plates. Carbon 18(6):383

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by the Board of Research in Nuclear Science, India, for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharma, R., Ravikumar, N.L., Dasgupta, K., Chakravartty, J.K., Kar, K.K. (2017). Advanced Carbon–Carbon Composites: Processing Properties and Applications. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_10

Download citation

Publish with us

Policies and ethics