Skip to main content

Enzyme Diagnostics in a Changing World of Exome Sequencing and Newborn Screening as Exemplified for Peroxisomal, Mitochondrial, and Lysosomal Disorders

  • Chapter
  • First Online:
  • 3050 Accesses

Abstract

Enzymes are the ultimate catalysts of chemical reactions and thus form the essence of metabolic pathways to ensure metabolic homeostasis. This occurs in close conjunction with the multiple transmembrane metabolite transporters which allow enzymes localized in different compartments within each individual cell to interact with one another. Until recently, enzymology was the obligatory, second step in the diagnostic algorithm aimed to identify the underlying defect in any patient suspected to suffer from an inborn error of metabolism (IEM) as a logical follow-up of metabolic investigations. This classical approach has led to the discovery of numerous inborn errors of metabolism. The introduction of sophisticated, highly accurate, and fast DNA sequencing technologies has revolutionized the field of inborn errors of metabolism and DNA sequencing may soon be the first line of investigation, especially in patients with an undefined set of signs and symptoms. Although these new developments will definitely change the sequence of events in the diagnosis of patients suspected to suffer from an inborn error of metabolism, enzymological studies will remain of crucial importance since it is the only way to resolve the functional consequences of the DNA variants found upon whole exome or whole genome sequencing in close conjunction with metabolite studies in such patients. We will describe the importance of enzymology for the diagnosis of patients affected by a peroxisomal disorder, a disorder of mitochondrial beta-oxidation, a defect in oxidative phosphorylation (OXPHOS), or a lysosomal disorder.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  CAS  PubMed  Google Scholar 

  • Aerts JMFG, Groener JE, Kuiper S et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 105:2812–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroy T, Koster J, Stromme P et al (2015) A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform. Hum Mol Genet 24:5845–5854

    Article  PubMed  Google Scholar 

  • Bezman L, Moser AB, Raymond GV et al (2001) Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol 49:512–517

    Article  CAS  PubMed  Google Scholar 

  • Bonesso L, Piraud M, Caruba C, Van Obberghen E, Mengual R, Hinault C (2014) Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Orphanet J Rare Dis 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Boustany RM (2013) Lysosomal storage diseases – the horizon expands. Nat Rev Neurol 9:583–598

    Article  CAS  PubMed  Google Scholar 

  • Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822:1442–1452

    Article  CAS  PubMed  Google Scholar 

  • Braverman N, Chen L, Lin P et al (2002) Mutation analysis of PEX7 in 60 probands with rhizomelic chondrodysplasia punctata and functional correlations of genotype with phenotype. Hum Mutat 20:284–297

    Article  CAS  PubMed  Google Scholar 

  • Chinnery PF, Zeviani M (2008) Polymerase gamma and disorders of mitochondrial DNA synthesis. Neuromuscul Disord 18:259–267

    Article  PubMed  Google Scholar 

  • Danpure CJ, Purdue PE, Fryer P et al (1993) Enzymological and mutational analysis of a complex primary hyperoxaluria type 1 phenotype involving alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting and intraperoxisomal aggregation. Am J Hum Genet 53:417–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B (2009) Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease – lysosomal storage disorders caused by defects of non-lysosomal proteins. Biochim Biophys Acta 1793:710–725

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Clayton PT et al (2000) Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet 24:188–191

    Article  CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Mooyer PA et al (2006a) Clinical and biochemical spectrum of D-bifunctional protein deficiency. Ann Neurol 59:92–104

    Article  PubMed  Google Scholar 

  • Ferdinandusse S, Kostopoulos P, Denis S et al (2006b) Mutations in the gene encoding peroxisomal sterol carrier protein X (SCPx) cause leukencephalopathy with dystonia and motor neuropathy. Am J Hum Genet 78:1046–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdinandusse S, Denis S, Hogenhout EM et al (2007) Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat 28:904–912

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S (2014) Peroxisome biogenesis in mammalian cells. Front Physiol 5:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray G, Claridge P, Jenkinson L, Green A (2007) Quantitation of urinary glycosaminoglycans using dimethylene blue as a screening technique for the diagnosis of mucopolysaccharidoses: an evaluation. Ann Clin Biochem 44:360–363

    Article  CAS  PubMed  Google Scholar 

  • Hoefs SJ, Dieteren CE, Distelmaier F et al (2008) NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet 82:1306–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn MA, van den Brink DM, Wanders RJA et al (2007) Phenotype of adult refsum disease due to a defect in peroxin 7. Neurology 68:698–700

    Article  CAS  PubMed  Google Scholar 

  • Houten SM, Wanders RJA (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen AJ, Trijbels FJ, Sengers RC et al (2006) Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology. Clin Chem 52:860–871

    Article  CAS  PubMed  Google Scholar 

  • Janssen AJ, Schuelke M, Smeitink JAM et al (2008) Muscle 3243A→G mutation load and capacity of the mitochondrial energy-generating system. Ann Neurol 63:473–481

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Sidhu R, Porter FD et al (2011) A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. J Lipid Res 52:1435–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonckheere AI, Renkema GH, Bras M et al (2013) A complex V ATP5A1 defect causes fatal neonatal mitochondrial encephalopathy. Brain 136:1544–1554

    Article  PubMed  Google Scholar 

  • Klinke G, Rohrbach M, Giugliani R et al (2015) LC-MS/MS based assay and reference intervals in children and adolescents for oxysterols elevated in Niemann-Pick diseases. Clin Biochem 48:596–602

    Article  CAS  PubMed  Google Scholar 

  • Kollmann K, Pohl S, Marschner K et al (2010) Mannose phosphorylation in health and disease. Eur J Cell Biol 89:117–123

    Article  CAS  PubMed  Google Scholar 

  • Kolter T, Sandhoff K (2005) Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 21:81–103

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1:462–468

    CAS  PubMed  Google Scholar 

  • Langereis EJ, Wagemans T, Kulik W et al (2015) A multiplex assay for the diagnosis of mucopolysaccharidoses and mucolipidoses. PLoS One 10:e0138622

    Article  PubMed  PubMed Central  Google Scholar 

  • Leinekugel P, Michel S, Conzelmann E, Sandhoff K (1992) Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88:513–523

    Article  CAS  PubMed  Google Scholar 

  • Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A (2012) Autophagy in lysosomal storage disorders. Autophagy 8:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr JA, Merkel O, Kohlwein SD et al (2007) Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am J Hum Genet 80:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari F, Raas-Rothschild A, Rio M et al (2005) Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 76:334–339

    Article  CAS  PubMed  Google Scholar 

  • Motley AM, Brites P, Gerez L et al (2002) Mutational spectrum in the PEX7 gene and functional analysis of mutant alleles in 78 patients with rhizomelic chondrodysplasia punctata type 1. Am J Hum Genet 70:612–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nada MA, Rhead WJ, Sprecher H, Schulz H, Roe CR (1995) Evidence for intermediate channeling in mitochondrial beta- oxidation. J Biol Chem 270:530–535

    Article  CAS  PubMed  Google Scholar 

  • Olpin SE, Manning NJ, Pollitt RJ, Clarke S (1997) Improved detection of long-chain fatty acid oxidation defects in intact cells using [9,10-3H]oleic acid. J Inherit Metab Dis 20:415–419

    Article  CAS  PubMed  Google Scholar 

  • Pajares S, Arias A, Garcia-Villoria J et al (2015) Cholestane-3beta,5alpha,6beta-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency. J Lipid Res 56:1926–1935

    Article  CAS  PubMed  Google Scholar 

  • Platta HW, Erdmann R (2007) The peroxisomal protein import machinery. FEBS Lett 581:2811–2819

    Article  CAS  PubMed  Google Scholar 

  • Pulkes T, Sweeney MG, Hanna MG (2000) Increased risk of stroke in patients with the A12308G polymorphism in mitochondria. Lancet 356:2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Ramadan H, Al-Din AS, Ismail A et al (2007) Adult neuronal ceroid lipofuscinosis caused by deficiency in palmitoyl protein thioesterase 1. Neurology 68:387–388

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502

    Article  CAS  PubMed  Google Scholar 

  • Sacksteder KA, Gould SJ (2000) The genetics of peroxisome biogenesis. Annu Rev Genet 34:623–652

    Article  CAS  PubMed  Google Scholar 

  • Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonaro CM, D’Angelo M, He X et al (2008) Mechanism of glycosaminoglycan-mediated bone and joint disease: implications for the mucopolysaccharidoses and other connective tissue diseases. Am J Pathol 172:112–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smid BE, van der Tol L, Biegstraaten M, Linthorst GE, Hollak CE, Poorthuis BJ (2015) Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease. J Med Genet 52:262–268

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Almomani R, Breedveld GJ et al (2013) Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum Mutat 34:706–713

    Article  CAS  PubMed  Google Scholar 

  • van den Brink DM, Brites P, Haasjes J et al (2003) Identification of PEX7 as the second gene involved in refsum disease. Am J Hum Genet 72:471–477

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Tol L, Smid BE, Poorthuis BJ et al (2014) A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance. J Med Genet 51:1–9

    Article  PubMed  Google Scholar 

  • van Diggelen OP, Thobois S, Tilikete C et al (2001) Adult neuronal ceroid lipofuscinosis with palmitoyl-protein thioesterase deficiency: first adult-onset patients of a childhood disease. Ann Neurol 50:269–272

    Article  PubMed  Google Scholar 

  • van Karnebeek CD, Sly WS, Ross CJ et al (2014) Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am J Hum Genet 94:453–461

    Article  PubMed  PubMed Central  Google Scholar 

  • van Woerden CS, Groothoff JW, Wijburg FA, Annink C, Wanders RJA, Waterham HR (2004) Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int 66:746–752

    Article  PubMed  Google Scholar 

  • Ventura FV, Costa CG, Struys EA et al (1999) Quantitative acylcarnitine profiling in fibroblasts using [U-13C] palmitic acid: an improved tool for the diagnosis of fatty acid oxidation defects. Clin Chim Acta 281:1–17

    Article  CAS  PubMed  Google Scholar 

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walkley SU (2007) Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr Suppl 96:26–32

    Article  Google Scholar 

  • Wanders RJA (2004) Metabolic and molecular basis of peroxisomal disorders: a review. Am J Med Genet 126A:355–375

    Article  PubMed  Google Scholar 

  • Wanders RJA (2014) Peroxisomal diseases. In: Aminoff MJ, Daroff RB (eds) Encyclopedia of the neurological sciences. Academic, Oxford, pp 869–872

    Chapter  Google Scholar 

  • Wanders RJA, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJA, Ruiter JPN, IJlst L, Waterham HR, Houten SM (2010) The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab Dis 33:479–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterham HR, Ebberink MS (2012) Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta 1822:1430–1441

    Article  CAS  PubMed  Google Scholar 

  • Weller S, Gould SJ, Valle D (2003) Peroxisome biogenesis disorders. Annu Rev Genomics Hum Genet 4:165–211

    Article  CAS  PubMed  Google Scholar 

  • Wittig I, Carrozzo R, Santorelli FM, Schagger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072

    Article  CAS  PubMed  Google Scholar 

  • Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ (2015) Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis 38:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia B, Asif G, Arthur L et al (2013) Oligosaccharide analysis in urine by maldi-tof mass spectrometry for the diagnosis of lysosomal storage diseases. Clin Chem 59:1357–1368

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. A. Wanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wanders, R.J.A., Poorthuis, B.J.H.M., Rodenburg, R.J.T. (2017). Enzyme Diagnostics in a Changing World of Exome Sequencing and Newborn Screening as Exemplified for Peroxisomal, Mitochondrial, and Lysosomal Disorders. In: Hoffmann, G., Zschocke, J., Nyhan, W. (eds) Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49410-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49410-3_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49408-0

  • Online ISBN: 978-3-662-49410-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics