Skip to main content

Metabolic Myopathies

  • Chapter
  • First Online:
Inherited Metabolic Diseases
  • 3070 Accesses

Abstract

The metabolic disorders which affect muscle can cause chronic weakness and hypotonia or episodic exercise intolerance cumulating in rhabdomyolysis or both. Rhabdomyolysis disorders can be conveniently separated according to tolerance of short, intense exercise compared to longer, milder efforts. Most metabolic disorders which affect skeletal muscle do so by altering energy metabolism. Muscle at rest uses fatty acids as the main energy source. During intense exercise, there will be anaerobic glycolysis and utilization of muscle glycogen. During sustained exercise, fatty acids become again the source of fuel. Exercise, fasting, cold, infections, and medications may elicit symptoms. Important causes of metabolic myopathy include adenosine monophosphate (myoadenylate) deaminase deficiency, and disorders of glycolysis, glycogenolysis, fatty acid oxidation, and oxidative phosphorylation. In many cases, other organs are involved. Diagnosis requires careful attention to dietary and exercise history and appropriate laboratory investigations. Exercise testing, electromyogram, molecular testing, and muscle biopsy can provide essential information. Treatment depends on avoiding precipitating factors and optimizing muscle energetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 239.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bruno C, Minetti C, Shanske S et al (1998) Combined defects of muscle phosphofructokinase and AMP deaminase in a child with myoglobinuria. Neurology 50:296–298

    Article  CAS  PubMed  Google Scholar 

  • Chan EK, Kornberg AJ, Ryan MM (2015) A diagnostic approach to recurrent myalgia and rhabdomyolysis in children. Arch Dis Child 100:793–797

    Article  PubMed  Google Scholar 

  • Delonlay P, Rotig A, Sarnat HB (2013) Respiratory chain deficiencies. Handb Clin Neurol 113:1651–1666

    Article  PubMed  Google Scholar 

  • Desbats MA, Lunardi G, Doimo M et al (2015) Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 38:145–156

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Cazorla A, Mochel F, Lamari F, Saudubray JM (2015) The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview. J Inherit Metab Dis 38:19–40

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Freire M, Santiago C, Gomez-Gallego F et al (2009) Does the K153R variant of the myostatin gene influence the clinical presentation of women with McArdle disease? Neuromuscul Dis: NMD 19:220–222

    Article  Google Scholar 

  • Hogan KJ, Vladutiu GD (2009) Malignant hyperthermia-like syndrome and carnitine palmitoyltransferase II deficiency with heterozygous R503C mutation. Anesth Analg 109:1070–1072

    Article  CAS  PubMed  Google Scholar 

  • Howell RR, Byrne B, Darras BT et al (2006) Diagnostic challenges for Pompe disease: an under-recognized cause of floppy baby syndrome. Genet Med 8:289–296

    Article  PubMed  Google Scholar 

  • Ibdah JA, Yang Z, Bennett MJ (2000) Liver disease in pregnancy and fetal fatty acid oxidation defects. [Review] [44 refs]. Mol Gen Metab 71:182–189

    Article  CAS  Google Scholar 

  • Innes AM, Seargeant LE, Balachandra K et al (2000) Hepatic carnitine palmitoyltransferase I deficiency presenting as maternal illness in pregnancy. Pediatr Res 47:43–45

    Article  CAS  PubMed  Google Scholar 

  • Jebbink J, Wolters A, Fernando F et al (2012) Molecular genetics of preeclampsia and HELLP syndrome – a review. Biochim Biophys Acta (BBA) – Mol Basis Dis 1822:1960–1969

    Article  CAS  Google Scholar 

  • Joshi PR, Deschauer M, Zierz S (2012) Clinically symptomatic heterozygous carnitine palmitoyltransferase II (CPT II) deficiency. Wien Klin Wochenschr 124:851–854

    Article  PubMed  Google Scholar 

  • Kishnani PS, Austin SL, Arn P et al (2010) Glycogen storage disease type III diagnosis and management guidelines. Genet Med: Off J Am Coll Med Genet 12:446–463

    Article  CAS  Google Scholar 

  • Kishnani PS, Amartino HM, Lindberg C et al (2013) Timing of diagnosis of patients with Pompe disease: data from the Pompe registry. Am J Med Genet A 161a:2431–2443

    PubMed  Google Scholar 

  • Lachmann R, Schoser B (2013) The clinical relevance of outcomes used in late-onset Pompe disease: can we do better? Orphanet J Rare Dis 8:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Magoulas PL, El-Hattab AW (1993) Glycogen storage disease type IV. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH et al (eds) GeneReviews(R). University of Washington, Seattle

    Google Scholar 

  • Martin MA, Lucia A, Arenas J, et al (1993) Glycogen storage disease type V. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews (R). University of Washington, Seattle. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1344/

  • Martinuzzi A, Sartori E, Fanin M et al (2003) Phenotype modulators in myophosphorylase deficiency. Ann Neurol 53:497–502

    Article  CAS  PubMed  Google Scholar 

  • Niezgoda J, Morgan PG (2013) Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth 23:785–793

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldfors A, DiMauro S (2013) New insights in the field of muscle glycogenoses. Curr Opin Neurol 26:544–553

    Article  CAS  PubMed  Google Scholar 

  • Orngreen MC, Jeppesen TD, Andersen ST et al (2009) Fat metabolism during exercise in patients with McArdle disease. Neurology 72:718–724

    Article  CAS  PubMed  Google Scholar 

  • Parikh S, Goldstein A, Koenig MK et al (2014) Practice patterns of mitochondrial disease physicians in North America. Part 1: diagnostic and clinical challenges. Mitochondrion 14:26–33

    Article  CAS  PubMed  Google Scholar 

  • Parikh S, Goldstein A, Koenig MK et al (2013) Practice patterns of mitochondrial disease physicians in North America. Part 2: treatment, care and management. Mitochondrion 13:681–687

    Article  CAS  PubMed  Google Scholar 

  • Robinson R, Carpenter D, Shaw MA et al (2006) Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat 27(10):977–989

    Article  CAS  PubMed  Google Scholar 

  • Roe CR, Brunengraber H (2015) Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: Review of 15 years experience. Mol Genet Metab 116:260–268

    Google Scholar 

  • Roe CR, Bottiglieri T, Wallace M (2010) Adult polyglucosan body disease (APBD): anaplerotic diet therapy (triheptanoin) and demonstration of defective methylation pathways. Mol Genet Metab 101:246–252

    Article  CAS  PubMed  Google Scholar 

  • Rubio JC, Martin MA, Bautista J (1997) Association of genetically proven deficiencies of myophosphorylase and AMP deaminase: a second case of ‘double trouble’. Neuromuscul Dis: NMD 7(6–7):387–389

    Article  CAS  Google Scholar 

  • Sharp LJ, Haller RG (2014) Metabolic and mitochondrial myopathies. Neurol Clin 32:777–799, ix

    Article  PubMed  Google Scholar 

  • Stamm DS, Aylsworth AS, Stajich JM, Kahler SG et al (2008) Native American myopathy: congenital myopathy with cleft palate, skeletal anomalies, and susceptibility to malignant hyperthermia. Am J Med Genet A 146A:1832–1841

    Article  CAS  PubMed  Google Scholar 

  • Stewart CR, Kahler SG, Gilchrist JM (1988) Congenital myopathy with cleft palate and increased susceptibility to malignant hyperthermia: King syndrome? Pediatr Neurol 4:371–374

    Article  CAS  PubMed  Google Scholar 

  • Vladutiu GD, Bennett MJ, Smail D (2000) A variable myopathy associated with heterozygosity for the R503C mutation in the carnitine palmitoyltransferase II gene. Mol Genet Metab 70:134–141

    Article  CAS  PubMed  Google Scholar 

  • Winkel LP, Hagemans ML, van Doorn PA et al (2005) The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol 252:875–884

    Article  PubMed  Google Scholar 

  • Wu JW, Yang H, Wang SP et al (2015) Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 38:85–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Kahler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kahler, S.G. (2017). Metabolic Myopathies. In: Hoffmann, G., Zschocke, J., Nyhan, W. (eds) Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49410-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49410-3_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49408-0

  • Online ISBN: 978-3-662-49410-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics