Skip to main content

Effects of Different Mg/Ti Ratios on the Electrochemical Hydrogen Storage Properties of Mg x Ti1−x –Pd Films

  • Chapter
  • First Online:
  • 359 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Other than the gaseous hydrogen storage properties, metals, and alloys can also store hydrogen by electrochemical methods. At present, hydrogen storage alloys are used as the negative electrode materials in nickel-metal hydride (Ni–MH) batteries, which is a significant application. As the negative electrodes, the hydrogen storage alloys significantly affect the overall charge-discharge properties of Ni–MH.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li XF, Wang LZ, Dong HC et al (2012) Electrochemical hydrogen absorbing properties of graphite/AB5 alloy composite electrode. J Alloys Compd 510:114–118

    Article  CAS  Google Scholar 

  2. Boussami S, Khaldi C, Lamloumi J et al (2012) Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries. Electrochim Acta 69:203–208

    Article  CAS  Google Scholar 

  3. Bliznakov S, Lefterova E, Dimitrov N et al (2008) A study of the Al content impact on the properties of MmNi4.4−xCo0.6Alx alloys as precursors for negative electrodes in Ni-MH batteries. J Power Sources 176:381–386

    Article  CAS  Google Scholar 

  4. Liao B, Lei YQ, Lu GL et al (2004) Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x = 1.6–2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries. J Power Sources 129:358–367

    Article  CAS  Google Scholar 

  5. Liu YF, Pan HG, Gao MX et al (2004) The effect of Mn substitution for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55−xCo0.45Mn x hydrogen storage electrode alloys. Int J Hydrogen Energy 29:297–305

    Article  CAS  Google Scholar 

  6. Dong ZW, Ma LQ, Shen XD et al (2011) Cooperative effect of Co and Al on the microstructure and electrochemical properties of AB3-type hydrogen storage electrode alloys for advanced MH/Ni secondary battery. Int J Hydrogen Energy 36:893–900

    Article  CAS  Google Scholar 

  7. Ovshinsky SR, Fetcenko MA, Ross J (1993) A nickel metal hydride battery for electric vehicles. Science 260:176–181

    Article  CAS  Google Scholar 

  8. Zhao XY, Li JJ, Yao Y et al (2012) Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy. RSC Adv 2:2149–2153

    Article  CAS  Google Scholar 

  9. Zhao XY, Zhou JF, Shen XD et al (2012) Structure and electrochemical hydrogen storage properties of A2B-type Ti–Zr–Ni alloys. Int J Hydrogen Energy 37:5050–5055

    Article  CAS  Google Scholar 

  10. Xu JL, Niu D, Fan YJ et al (2012) Electrochemical hydrogen storage performance of Mg2−xAlxNi thin films. J Power Sources 198:383–388

    Article  CAS  Google Scholar 

  11. Anik M, özdemir G, Küçükdeveci N (2011) Electrochemical hydrogen storage characteristics of Mg–Pd–Ni ternary alloys. Int J Hydrogen Energy 36:6744–6750

    Article  CAS  Google Scholar 

  12. Xiao XZ, Chen LX, Hang ZM et al (2009) Microstructures and electrochemical hydrogen storage properties of novel Mg–Al–Ni amorphous composites. Electrochem Commun 11:515–518

    Article  CAS  Google Scholar 

  13. Jain PI, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy 35:5133–5144

    Article  CAS  Google Scholar 

  14. Fu Y, Kulenovic R, Mertz R (2008) The cycle stability of Mg-based nanostructured materials. J Alloys Compd 464:374–376

    Article  CAS  Google Scholar 

  15. Vermeulen P, Niessen RAH, Notten PHL (2006) Hydrogen storage in metastable MgyTi(1−y) thin films. Electrochem Commun 8:27–32

    Article  CAS  Google Scholar 

  16. Xin GB, Yang JZ, Fu H et al (2013) Pd capped Mg x Ti1−x films: promising anode materials for alkaline secondary batteries with superior discharge capacities and cyclic stabilities. Int J Hydrogen Energy 38:10625–10629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongbiao Xin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xin, G. (2016). Effects of Different Mg/Ti Ratios on the Electrochemical Hydrogen Storage Properties of Mg x Ti1−x –Pd Films. In: Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49404-2_6

Download citation

Publish with us

Policies and ethics