Advertisement

Introduction

  • Gongbiao XinEmail author
Chapter
  • 314 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The social development and standard of living are closely connected with the energy consumption; so energy is extremely important for the modern society. In the last two centuries, the energy used for production and living was mainly generated from fossil fuels. In the nineteenth century, the main energy source was coal; while in the twentieth century, petroleum and natural gas played the dominant role. From 1980s, the distribution of the energy supply is relatively stable.

Keywords

Hydrogen Absorption Hydrogen Storage Hydrogen Storage Capacity Hydrogen Storage Material Hydrogen Storage Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Veziroglu TN (2000) Quarter century of hydrogen movement.In:Mao ZQ, Veziroglu TN (eds), Hydrogen energy progress VIII, vol. 1. Beijing, China 20, P127Google Scholar
  2. 2.
    Goltsov VA, Vezirouglu TN (2001) From hydrogen economy to hydrogen civilization. Int J Hydrogen Energy 26:909–915CrossRefGoogle Scholar
  3. 3.
    Bockris JOM (1999) Hydrogen economy in the future. Int J Hydrogen Energy 24:1–15CrossRefGoogle Scholar
  4. 4.
    Eiler JM, Tromp TK, Shia RL et al (2003) Assesing the future hydrogen economy-response. Science 302(5643):228–229Google Scholar
  5. 5.
    Kammen DM, Lipman TE (2003) Assessing the future hydrogen economy. Science 302(5643):226CrossRefGoogle Scholar
  6. 6.
    Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414(6861):353–358CrossRefGoogle Scholar
  7. 7.
    Robert A, Varin TC, Zbigniew S (2009) Nanomaterials for solid state hydrogen storage. Springer, LLC New YorkGoogle Scholar
  8. 8.
    Dunn S (2000) The hydrogen experiment. Worldwatch 13(6):14–25Google Scholar
  9. 9.
    Fukuda K, Ogata K, Kobayashi O (2001) A hydrogen introduction scenario in Japan. Paper presented at the 11th Canadian hydrogen conference, vol 7. Victoria, Canada, pp 17–20Google Scholar
  10. 10.
    Asia P (2004) Korea planing to develop hydrogen energy technology. Fuel Cell TodayGoogle Scholar
  11. 11.
    Nishino H, Nishida R, Matsui T (2003) Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon 41(14):2819–2823CrossRefGoogle Scholar
  12. 12.
    Philip B, Abraham JK, Chandrasekhar A et al (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935–939CrossRefGoogle Scholar
  13. 13.
    Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279CrossRefGoogle Scholar
  14. 14.
    Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295(5554):469–472CrossRefGoogle Scholar
  15. 15.
    Dillon AC, Jones KM, Bekkedahl TA et al (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377–379CrossRefGoogle Scholar
  16. 16.
    Wood CD, Tan B, Trewin A et al (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19(8):2034–2048CrossRefGoogle Scholar
  17. 17.
    Trewin A, Willock DJ, Cooper AI (2008) Atomistic simulation of micropore structure, surface area, and gas sorption properties for amorphous microporous polymer networks. J Phys Chem C 112(51):20549–20559CrossRefGoogle Scholar
  18. 18.
    Chen P, Xiong ZT, Luo JZ et al (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420(6913):302–304CrossRefGoogle Scholar
  19. 19.
    Gennari FC, Castro FJ, Gamboa JJA et al (2002) Synthesis of Mg2FeH6 by reactive mechanical alloying: formation and decomposition properties. J Alloys Compd 339(1–2):261–267CrossRefGoogle Scholar
  20. 20.
    Chen P, Xiong ZT, Luo JZ et al (2003) Interaction between lithium amide and lithium hydride. J Phys Chem B 107(39):10967–10970CrossRefGoogle Scholar
  21. 21.
    Ichikawa T, Hanada N, Isobe S et al (2004) Mechanism of novel reaction from LiNH2 and LiH to Li2NH and H2 as a promising hydrogen storage system. J Phys Chem B 108(23):7887–7892CrossRefGoogle Scholar
  22. 22.
    Ichikawa T, Isobe S, Hanada N et al (2004) Lithium nitride for reversible hydrogen storage. J Alloys Compd 365(1–2):271–276CrossRefGoogle Scholar
  23. 23.
    Noritake T, Towata S, Aoki M et al (2003) Charge density measurement in MgH2 by synchrotron X-ray diffraction. J Alloys Compd 356–357:84–86CrossRefGoogle Scholar
  24. 24.
    Libowitz GG, Hayes HF, Gibb TRP et al (1958) The system zirconium-nickel and hydrogen. J Phys Chem 62:76–79CrossRefGoogle Scholar
  25. 25.
    Van Vuncht JHN, Kuijpers FA et al (1970) Philips Res Rep 25:133Google Scholar
  26. 26.
    Shao HY, Asano K, Enoki H et al (2009) Correlation study between hydrogen absorption property and lattice structure of Mg-based BCC alloys. Int J Hydrogen Energy 34:2312–2318CrossRefGoogle Scholar
  27. 27.
    Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compd 295:877–888CrossRefGoogle Scholar
  28. 28.
    Li XF, Wang LZ, Dong HC et al (2012) Electrochemical hydrogen absorbing properties of graphite/AB5 alloy composite electrode. J Alloys Compd 510:114–118Google Scholar
  29. 29.
    Boussami S, Khaldi C, Lamloumi J et al (2012) Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries. Electrochim Acta 69:203–208Google Scholar
  30. 30.
    Bliznakov S, Lefterova E, Dimitrov N et al (2008) A study of the Al content impact on the properties of MmNi4.4–xCo0.6Alx alloys as precursors for negative electrodes in Ni-MH batteries. J Power Sources 176:381–386Google Scholar
  31. 31.
    Liao B, Lei YQ, Lu GL et al (2004) Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3–xNi9 (x = 1.6–2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries. J Power Sources 129:358–367Google Scholar
  32. 32.
    Ovshinsky SR, Fetcenko MA, Ross J (1993) A nickel metal hydride battery for electric vehicles. Science 260:176–181CrossRefGoogle Scholar
  33. 33.
    Zhao XY, Li JJ, Yao Y et al (2012) Electrochemical hydrogen storage properties of a non-equilibrium Ti2Ni alloy. RSC Adv 2:2149–2153CrossRefGoogle Scholar
  34. 34.
    Zhao XY, Zhou JF, Shen XD et al (2012) Structure and electrochemical hydrogen storage properties of A2B-type Ti-Zr-Ni alloys. Int J Hydrogen Energy 37:5050–5055Google Scholar
  35. 35.
    Xu JL, Niu D, Fan YJ et al (2012) Electrochemical hydrogen storage performance of Mg2-xAlxNi thin films. J Power Sources 198:383–388Google Scholar
  36. 36.
    Anik M, özdemir G, Küçükdeveci N (2011) Electrochemical hydrogen storage characteristics of Mg-Pd-Ni ternary alloys. Int J Hydrogen Energy 36:6744–6750CrossRefGoogle Scholar
  37. 37.
    Xiao XZ, Chen LX, Hang ZM et al (2009) Microstructures and electrochemical hydrogen storage properties of novel Mg-Al-Ni amorphous composites. Electrochem Commun 11:515–518CrossRefGoogle Scholar
  38. 38.
    Jain PI, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy 35:5133–5144CrossRefGoogle Scholar
  39. 39.
    Fu Y, Kulenovic R, Mertz R (2008) The cycle stability of Mg-based nanostructured materials. J Alloys Compd 464:374–376CrossRefGoogle Scholar
  40. 40.
    Vermeulen P, Niessen RAH, Notten PHL (2006) Hydrogen storage in metastable MgyTi(1−y) thin films. Electrochem Commun 8:27–32Google Scholar
  41. 41.
    Noritake T, Towata S, Aoki M et al (2003) Charge density measurement in MgH2 by synchrotron X-ray diffraction. J Alloys Compd 356–357:84–86CrossRefGoogle Scholar
  42. 42.
    Noritake T, Aoki M, Towata S et al (2002) Chemical bonding of hydrogen in MgH2. Appl Phys Lett 81(11):2008–2010CrossRefGoogle Scholar
  43. 43.
    Luz Z, Genossar J, Rudman PS (1980) Identification of the diffusing atom in MgH2. J Less-Common Met 73(1):113–118CrossRefGoogle Scholar
  44. 44.
    Borislav B, S-T Liao, Schwickardi M et al (1980) Catalytic synthesis of magnesium hydride under mild conditions. Angew Chem Int Ed 19(10):818–819Google Scholar
  45. 45.
    Yang J, Sudik A, Wolverton C et al (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675CrossRefGoogle Scholar
  46. 46.
    Barkhordarian G, Klassen T, Bormann R (2003) Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr Mater 49(3):213–217CrossRefGoogle Scholar
  47. 47.
    Bobet JL, Chevalier B, Song MY et al (2003) Improvements of hydrogen storage properties of Mg-based mixtures elaborated by reactive mechanical milling. J Alloys Compd 356:570–574CrossRefGoogle Scholar
  48. 48.
    Terzieva M, Khrussanova M, Peshev P et al (1995) Hydriding and dehydriding characteristics of mixtures with a high magnesium content obtained by sintering and mechanical alloying. Int J Hydrogen Energy 20(1):53–58CrossRefGoogle Scholar
  49. 49.
    Huot J, Liang G, Schulz R (2001) Mechanically alloyed metal hydride systems. Appl Phys Mater Sci Process 72(2):187–195CrossRefGoogle Scholar
  50. 50.
    Bobet JL, Grigorova E, Khrussanova M et al (2004) Hydrogen sorption properties of graphite-modified magnesium nanocomposites prepared by ball-milling. J Alloys Compd 366(1–2):298–302CrossRefGoogle Scholar
  51. 51.
    Tsuda M, Dino WA, Kasai H et al (2005) Magnetized/charged MgH2-based hydrogen storage materials. Appl Phys Lett 86(21):052103CrossRefGoogle Scholar
  52. 52.
    Huot J, Liang G, Boily S et al (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloy Compd 293:495–500CrossRefGoogle Scholar
  53. 53.
    Liang G, Huot J, Boily S et al (1999) Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J Alloys Compd 291(1–2):295–299CrossRefGoogle Scholar
  54. 54.
    Aguey-Zinsou KF, Fernandez JRA, Klassen T et al (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 32(13):2400–2407CrossRefGoogle Scholar
  55. 55.
    Wagemans RWP, van Lenthe JH, de Jongh PE et al (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127(47):16675–16680CrossRefGoogle Scholar
  56. 56.
    Jeon KJ, Moon HR, Ruminski AM et al (2011) Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 10:286–290CrossRefGoogle Scholar
  57. 57.
    Norberg NS, Arthur TS, Fredrick SJ et al (2011) Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J Am Chem Soc 133:10679–10681CrossRefGoogle Scholar
  58. 58.
    Li WY, Li CS, Ma H et al (2007) Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc 129:6710–6711CrossRefGoogle Scholar
  59. 59.
    Oelerich W, Klassen T, Bormann R (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd 315(1–2):237–242CrossRefGoogle Scholar
  60. 60.
    Oelerich W, Klassen T, Bormann R (2001) Hydrogen sorption of nanocrystalline Mg at reduced temperatures by metal-oxide catalysts. Adv Eng Mater 3(7):487–490CrossRefGoogle Scholar
  61. 61.
    Oelerich W, Klassen T, Bormann R (2001) Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg. J Alloys Compd 322(1–2):L5–L9CrossRefGoogle Scholar
  62. 62.
    Pelletier JF, Huot J, Sutton M et al (2001) Hydrogen desorption mechanism in MgH2-Nb nanocomposites. Phys Rev B 63(5):052103CrossRefGoogle Scholar
  63. 63.
    Du AJ, Smith SC, Yao XD et al (2005) The role of Ti as a catalyst for the dissociation of hydrogen on a Mg(0001) surface. J Phys Chem B 109(38):18037–18041CrossRefGoogle Scholar
  64. 64.
    Imamura H, Sakasai N, Fujinaga T et al (1997) Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials. J Alloys Compd 253:34–37CrossRefGoogle Scholar
  65. 65.
    Liang G, Boily S, Huot J, Van Neste A et al (1998) Hydrogen absorption properties of a mechanically milled Mg-50 wt%LaNi5 composite. J Alloys Compd 268(1–2):302–307Google Scholar
  66. 66.
    Liang G, Huot J, Boily S et al (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloys Compd 292(1–2):247–252CrossRefGoogle Scholar
  67. 67.
    Zaluska A, Zaluski L, Strom-Olsen JO et al (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288(1–2):217–225CrossRefGoogle Scholar
  68. 68.
    Chen D, Chen L, Liu S et al (2004) Microstructure and hydrogen storage property of Mg/MWNTs composites. J Alloys Compd 372(1–2):231–237CrossRefGoogle Scholar
  69. 69.
    Fang HT, Liu CG, Chang L et al (2004) Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem Mater 16(26):5744–5750CrossRefGoogle Scholar
  70. 70.
    Yang J, Sudik A, Wolverton C et al (2007) Destabilizing LiBH4 with a metal (M = Mg, Al, Ti, V, Cr, or Sc) or metal hydride (MH2, MgH2, TiH2, or CaH2). J Phys Chem C 111(51):19134–19140CrossRefGoogle Scholar
  71. 71.
    He YP, Zhao YP (2009) Improved hydrogen storage properties of a V decorated Mg nanoblade array. Phys Chem Chem Phys 11:255–258CrossRefGoogle Scholar
  72. 72.
    Checchetto R, Bazzanella N, Miotello A et al (2005) Deuterium storage in Mg–Nb films. J Alloys Compd 404:461CrossRefGoogle Scholar
  73. 73.
    Huot J, Liang G, Boily S et al (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd 293:495CrossRefGoogle Scholar
  74. 74.
    Yao XD, Wu CZ, Du AJ et al (2007) Metallic and carbon nanotube-catalyzed coupling of hydrogenation in magnesium. J Am Chem Soc 129:15650–15654CrossRefGoogle Scholar
  75. 75.
    Lu J, Choi YJ, Fang ZGZ et al (2009) Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling. J Am Chem Soc 131:15843–15852CrossRefGoogle Scholar
  76. 76.
    Luo Y, Wang P, Ma LP et al (2007) Enhanced hydrogen storage properties of MgH2 co-catalyzed with NbF5 and single-walled carbon nanotubes. Scr Mater 56(9):765–768CrossRefGoogle Scholar
  77. 77.
    Zheng SY, Fang F, Zhang J et al (2007) Study of the correlation between the stability of Mg-based hydride and the Ti-containing agent. J Phys Chem C 111(37):14021–14025Google Scholar
  78. 78.
    Shao HY, Liu T, Li XG (2003) Preparation of the Mg2Ni compound from ultrafine particles and its hydrogen storage properties. Nanotechnol 14(3):L1–L3Google Scholar
  79. 79.
    Shao HY, Liu T, Wang YT et al (2008) Preparation of Mg-based hydrogen storage materials from metal nanoparticles. J Alloys Compd 465(1–2):527–533CrossRefGoogle Scholar
  80. 80.
    Shao HY, Xu HR, Wang YT et al (2004) Preparation and hydrogen storage properties of Mg2Ni intermetallic nanoparticles. Nanotechnol 15(3):269–274CrossRefGoogle Scholar
  81. 81.
    Zhu M, Wang H, Ouyang LZ et al (2006) Composite structure and hydrogen storage properties in Mg-base alloys. Int J Hydrogen Energy 31(2):251–257CrossRefGoogle Scholar
  82. 82.
    Nielsen TK, Bösenberg U, Gosalawit R et al (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908CrossRefGoogle Scholar
  83. 83.
    Li GR, Feng ZP, Ou YN et al (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26:2209–2213CrossRefGoogle Scholar
  84. 84.
    Rolison DR, Long JW, Lytle JC et al (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38:226–252CrossRefGoogle Scholar
  85. 85.
    Tian HY, Buckley CE, Wang SB et al (2009) Enhanced hydrogen storage capacity in carbon aerogels treated with KOH. Carbon 47:2128–2130CrossRefGoogle Scholar
  86. 86.
    Gross AF, Vajo JJ, Van Atta SL et al (2008) Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C 112:5651–5657Google Scholar
  87. 87.
    Feaver A, Sepehri S, Shamberger P et al (2007) Coherent carbon cryogel-ammonia borane nanocomposites for H2 Storage. J Phys Chem B 111:7469–7472Google Scholar
  88. 88.
    Du HD, Li BH, Kang FY et al (2007) Carbon aerogel supported Pt-Ru catalysts for using as the anode of direct methanol fuel cells. Carbon 45:429–435CrossRefGoogle Scholar
  89. 89.
    Kabbour H, Baumann TF, Satcher JH et al (2006) Toward new candidates for hydrogen storage: high-surface-area carbon aerogels. Chem Mater 18:6085–6087CrossRefGoogle Scholar
  90. 90.
    Biener J, Stadermann M, Suss M et al (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656CrossRefGoogle Scholar
  91. 91.
    Zhao-Karger ZR, Hu JJ, Roth A et al (2010) Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem Commun 46:8353–8355CrossRefGoogle Scholar
  92. 92.
    Li WY, Li CS, Zhou CY et al (2006) Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and Mg/air battery applications. Angew Chem Int Ed 45(36):6009–6012CrossRefGoogle Scholar
  93. 93.
    Friedrichs O, Aguey-Zinsou F, Fernandez JRA et al (2006) MgH2 with Nb2O5 as additive, for hydrogen storage: Chemical, structural and kinetic behavior with heating. Acta Mater 54(1):105–110CrossRefGoogle Scholar
  94. 94.
    Ellinger FH, Holley CE, McInteer BB et al (1955) The preparation and some properties of magnesium hydride. J Am Chem Soc 77(9):2647–2648CrossRefGoogle Scholar
  95. 95.
    Tajima K, Yamada Y, Bao S et al (2008) Solid electrolyte of tantalum oxide thin film deposited by reactive DC and RF magnetron sputtering for all-solid-state switchable mirror glass. Sol Energy Mater Sol Cells 92(2):120–125CrossRefGoogle Scholar
  96. 96.
    Kierey H, Rode M, Jacob A et al (2001) Raman effect and structure of YH3 and YD3 thin epitaxial films. Phys Rev B 63(13):134109CrossRefGoogle Scholar
  97. 97.
    Pasturel M, Slaman M, Schreuders H et al (2006) Hydrogen absorption kinetics and optical properties of Pd-doped Mg thin films. J Appl Phys 100(2):023515CrossRefGoogle Scholar
  98. 98.
    Yamada Y, Bao S, Tajima K et al (2010) In situ spectroscopic ellipsometry study of the hydrogenation process of switchable mirrors based on magnesium-nickel alloy thin films. J Appl Phys 107(4):043517CrossRefGoogle Scholar
  99. 99.
    Yoshimura K, Bao SH, Yamada Y et al (2006) Optical switching property of Pd-capped Mg-Ni alloy thin films prepared by magnetron sputtering. Vacuum 80(7):684–687CrossRefGoogle Scholar
  100. 100.
    Yoshimura K, Yamada Y, Okada M (2004) Hydrogenation of Pd capped Mg thin films at room temperature. Surf Sci 566:751–754CrossRefGoogle Scholar
  101. 101.
    Singh S, Eijt SWH, Zandbergen MW et al (2007) Nanoscale structure and the hydrogenation of Pd-capped magnesium thin films prepared by plasma sputter and pulsed laser deposition. J Alloys Compd 441(1–2):344–351CrossRefGoogle Scholar
  102. 102.
    Yamamoto K, Higuchi K, Kajioka H et al (2002) Optical transmission of magnesium hydride thin film with characteristic nanostructure. J Alloys Compd 330:352–356CrossRefGoogle Scholar
  103. 103.
    Leon A, Knystautas EJ, Huot J et al (2002) Hydrogenation characteristics of air-exposed magnesium films. J Alloys Compd 345(1–2):158–166CrossRefGoogle Scholar
  104. 104.
    Bouhtiyya S, Roue L (2009) Pd/Mg/Pd thin films prepared by pulsed laser deposition under different helium pressures: structure and electrochemical hydriding properties. Int J Hydrogen Energy 34(14):5778–5784CrossRefGoogle Scholar
  105. 105.
    Siviero G, Bello V, Mattei G et al (2009) Structural evolution of Pd-capped Mg thin films under H2 absorption and desorption cycles. Int J Hydrogen Energy 34(11):4817–4826CrossRefGoogle Scholar
  106. 106.
    Higuchi K, Yamamoto K, Kajioka H et al (2002) Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J Alloys Compd 330:526–530CrossRefGoogle Scholar
  107. 107.
    Higuchi K, Kajioka H, Toiyama K et al (1999) In situ study of hydriding-dehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization. J Alloys Compd 293–295:484–489CrossRefGoogle Scholar
  108. 108.
    Paillier J, Roue L (2005) Hydrogen electrosorption and structural properties of nanostructured Pd-Mg thin films elaborated by pulsed laser deposition. J Alloys Compd 404:473–476CrossRefGoogle Scholar
  109. 109.
    Paillier J, Bouhtiyya S, Ross GG et al (2006) Influence of the deposition atmosphere on the characteristics of Pd-Mg thin films prepared by pulsed laser deposition. Thin Solid Films 500(1–2):117–123CrossRefGoogle Scholar
  110. 110.
    He YP, Zhao YP (2009) Hydrogen storage and cycling properties of a vanadium decorated Mg nanoblade array on a Ti coated Si substrate. Nanotechnology 20(20):204008CrossRefGoogle Scholar
  111. 111.
    He YP, Zhao YP, Huang LW et al (2008) Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si substrates. Appl Phys Lett 93(16):163114CrossRefGoogle Scholar
  112. 112.
    Eijt SWH, Kind R, Singh S et al (2009) Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films. J Appl Phys 105(4):043514CrossRefGoogle Scholar
  113. 113.
    Shalaan E, Schmitt H (2006) Mg nanoparticle switchable mirror films with improved absorption-desorption kinetics. Surf Sci 600(18):3650–3653CrossRefGoogle Scholar
  114. 114.
    Ouyang LZ, Qin FX, Zhu M et al (2008) The effect of La addition on optical transmittance spectra of hydrogenated Mg-La thin films. J Appl Phys 104:016110CrossRefGoogle Scholar
  115. 115.
    Ouyang LZ, Ye SY, Dong HW et al (2007) Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films. Appl Phys Lett 90:021917CrossRefGoogle Scholar
  116. 116.
    Ouyang LZ, Wang H, Chung CY et al (2006) MgNi/Pd multilayer hydrogen storage thin films prepared by dc magnetron sputtering. J Alloys Compd 422:58–61CrossRefGoogle Scholar
  117. 117.
    Ouyang LZ, Wang H, Zhu M et al (2005) Microstructure of MmM5/Mg multi-layer films prepared by magnetron sputtering. J Alloys Compd 404–406:485–489CrossRefGoogle Scholar
  118. 118.
    Ouyang LZ, Wang H, Zhu M et al (2004) Microstructure of MmM5/Mg multi-layer hydrogen storage films prepared by magnetron sputtering. Microsc Res Tech 64:323–329CrossRefGoogle Scholar
  119. 119.
    Ouyang LZ, Chung CY, Wang H (2003) Microstructure of Mg-Ni thin film prepared by DC magnetron sputtering and its properties as a negative electrode. J Vac Sci 21:1905–1908CrossRefGoogle Scholar
  120. 120.
    Ouyang LZ, Chung CY, Zeng MQ et al (2003) Mg-Ni thin film-a potential negative electrode for nickel-metal hydrode battery. Acta Metall Sin 16:226–230Google Scholar
  121. 121.
    Ye SY, Chan SLI, Ouyang LZ et al (2010) Hydrogen storage and structure variation in Mg/Pd multi-layer film. J Alloys Compd 504:493CrossRefGoogle Scholar
  122. 122.
    Ye SY, Ouyang LZ, Zhu M (2006) Hydrogen storage properties of preferentially orientated Mg-Ni multilayer film prepared by magnetron sputtering. Rare Met 25:295–299CrossRefGoogle Scholar
  123. 123.
    Zhu M, Peng CH, Ouyang LZ et al (2006) The effect of nanocrystalline formation on the hydrogen storage properties of AB3-base Ml-Mg-Ni multi-phase alloys. J Alloys Compd 426:316–321CrossRefGoogle Scholar
  124. 124.
    Wang H, Ouyang LZ, Peng CH et al (2004) MmM5/Mg multi-layer hydrogen storage thin films prepared by DC magnetron sputtering. J Alloys Compd 370:L4–L6CrossRefGoogle Scholar
  125. 125.
    Wang H, Ouyang LZ, Zeng MQ et al (2004) Microstructure and hydrogen sorption properties of Mg-Ni/MmM5 multi-layer film by magnetron sputtering. Int J Hydrogen Energy 29:1389–1392CrossRefGoogle Scholar
  126. 126.
    Wang H, Ouyang LZ, Zeng MQ et al (2004) Hydrogen sorption properties of Mg/Mm-Ni multi-layer film prepared by thermal evaporation. J Alloys Compd 375:313–317CrossRefGoogle Scholar
  127. 127.
    Wang H, Ouyang LZ, Zeng MQ et al (2004) Direct synthesis of MgCNi3 by mechanical alloying. Scr Mater 50:1471–1474CrossRefGoogle Scholar
  128. 128.
    Fritzsche H, Ophus C, Harrower CT et al (2009) Low temperature hydrogen desorption in MgAl thin films achieved by using a nanoscale Ta/Pd bilayer catalyst. Appl Phys Lett 94(24):241901CrossRefGoogle Scholar
  129. 129.
    Tan XH, Harrower CT, Amirkhiz BS et al (2009) Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films. Int J Hydrogen Energy 34(18):7741–7748CrossRefGoogle Scholar
  130. 130.
    Hjort P, Krozer A, Kasemo B (1996) Hydrogen sorption kinetics in partly oxidized Mg films. J Alloys Compd 237(1–2):74–80CrossRefGoogle Scholar
  131. 131.
    Hjort P, Krozer A, Kasemo B (1996) Resistivity and hydrogen uptake measurements in evaporated Mg films at 350 K. J Alloys Compd 234(2):L11–L15CrossRefGoogle Scholar
  132. 132.
    Kooij ES, van Gogh ATM, Griessen R (1999) In situ resistivity measurements and optical transmission and reflection spectroscopy of electrochemically loaded switchable films. J Electrochem Soc 146(8):2990–2994CrossRefGoogle Scholar
  133. 133.
    Darok X, Rougier A, Bhat V et al (2006) Benefits of carbon addition on the hydrogen absorption properties of Mg-based thin films grown by Pulsed Laser Deposition. Thin Solid Films 515(4):1299–1306CrossRefGoogle Scholar
  134. 134.
    Borgschulte A, Rector JH, Dam B et al (2005) The role of niobium oxide as a surface catalyst for hydrogen absorption. J Catal 235(2):353–358CrossRefGoogle Scholar
  135. 135.
    Borgschulte A, Westerwaal RJ, Rector JH et al (2006) Catalytic activity of noble metals promoting hydrogen uptake. J Catal 239(2):263–271CrossRefGoogle Scholar
  136. 136.
    Gremaud R, Borgschulte A, Lohstroh W et al (2005) Ti-catalyzed Mg(AlH4)2: a reversible hydrogen storage material. J Alloys Compd 404:775–778CrossRefGoogle Scholar
  137. 137.
    Leon A, Knystautas EJ, Huot J et al (2003) Hydrogen sorption properties of vanadium-and palladium-implanted magnesium films. J Alloys Compd 356:530–535CrossRefGoogle Scholar
  138. 138.
    Pasturel M, Slaman M, Schreuders H et al (2006) Hydrogen absorption kinetics and optical properties of Pd-doped Mg thin films. J Appl Phys 100(2):023515CrossRefGoogle Scholar
  139. 139.
    Akyildiz H, Ozenbas M, Ozturk T (2006) Hydrogen absorption in magnesium based crystalline thin films. Int J Hydrogen Energy 31(10):1379–1383CrossRefGoogle Scholar
  140. 140.
    Checchetto R, Brusa RS, Bazzanella N et al (2004) Structural evolution of nanocrystalline Pd-Mg bilayers under deuterium absorption and desorption cycles. Thin Solid Films 469–470:350–355CrossRefGoogle Scholar
  141. 141.
    Checchetto R, Bazzanella N, Miotello A et al (2005) Deuterium storage in Mg-Nb films. J Alloys Compd 404–406:461–464CrossRefGoogle Scholar
  142. 142.
    Checchetto R, Bazzanella N, Miotello A et al (2004) Deuterium storage in nanocrystalline magnesium thin films. J Appl Phys 95(4):1989–1995CrossRefGoogle Scholar
  143. 143.
    Zahiri B, Amirkhiz BS, Mitlin D et al (2010) Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr Ti. Appl Phys Lett 97:083106CrossRefGoogle Scholar
  144. 144.
    Zahiri B, Harrower CT, Amirkhiz BS et al (2009) Rapid and reversible hydrogen sorption in Mg-Fe-Ti thin films. Appl Phys Lett 95:103114CrossRefGoogle Scholar
  145. 145.
    Zahiri B, Amirkhiz BS, Danaie M et al (2010) Bimetallic Fe-V catalyzed magnesium films exhibiting rapid and cycleable hydrogenation at 200 °C. Appl Phys Lett 96:013108CrossRefGoogle Scholar
  146. 146.
    Tan XH, Harrower CT, Amirkhiz BS et al (2009) Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films. Int J Hydrogen Energy 34:7741–7748CrossRefGoogle Scholar
  147. 147.
    Amirkhiz BS, Danaie M, Mitlin D (2009) The influence of SWCNT-metallic nanoparticle mixtures on the desorption properties of milled MgH2 powders. Nanotechnology 20:204016CrossRefGoogle Scholar
  148. 148.
    Amirkhiz BS, Danaie M, Barnes M et al (2010) Hydrogen sorption cycling kinetic stability and microstructure of single-walled carbon nanotube (SWCNT) magnesium hydride (MgH2) nanocomposites. J Phys Chem C 114:3265–3275CrossRefGoogle Scholar
  149. 149.
    Fritzsche H, Ophus C, Harrower CT et al (2009) Low temperature hydrogen desorption in MgAl thin films achieved by using a nanoscale Td/Pd bilayer catalyst. Appl Phys Lett 94:241901CrossRefGoogle Scholar
  150. 150.
    Fritzsche H, Saoudi M, Haagsma J et al (2008) Neutron reflectometry study of hydrogen desorption in destabilized MgAl alloy thin films. Appl Phys Lett 92:121917CrossRefGoogle Scholar
  151. 151.
    Danaie M, Tao SX, Kalisvaart P et al (2010) Analysis of deformation twins and the partially dehydrogenated microstructure in nanocrystalline magnesium hydride (MgH2) powder. Acta Mater 58:3162–3172CrossRefGoogle Scholar
  152. 152.
    Danaie M, Mitlin D (2009) TEM analysis and sorption properties of high-energy milled MgH2 powders. J Alloys Compd 476:590–598CrossRefGoogle Scholar
  153. 153.
    Huiberts JN, Griessen R, Rector JH et al (1996) Yttrium and lanthanum hydride films with switchable optical properties. Nature 380(6571):231–234CrossRefGoogle Scholar
  154. 154.
    van der Sluis P, Ouwerkerk M, Duine PA (1997) Optical switches based on magnesium lanthanide alloy hydrides. Appl Phys Lett 70(25):3356–3358CrossRefGoogle Scholar
  155. 155.
    van Gogh ATM, Kooij ES, Griessen R (1999) Isotope effects in switchable metal-hydride mirrors. Phys Rev Lett 83(22):4614CrossRefGoogle Scholar
  156. 156.
    Hoekstra AFT, Roy AS, Rosenbaum TF et al (2001) Light-induced metal-insulator transition in a switchable mirror. Phys Rev Lett 86(23):5349CrossRefGoogle Scholar
  157. 157.
    Roy AS, Hoekstra AFT, Rosenbaum TF et al (2002) Quantum fluctuations and the closing of the coulomb gap in a correlated insulator. Phys Rev Lett 89(27):276402CrossRefGoogle Scholar
  158. 158.
    Lee MW, Lin CH (2000) Determination of the optical constants of the gamma-phase GdH3 thin films. J Appl Phys 87(11):7798–7801CrossRefGoogle Scholar
  159. 159.
    Azofeifa DE, Clark N (2000) Optical and electrical changes of hydrogenated Dy films. J Alloys Compd 305(1–2):32–34CrossRefGoogle Scholar
  160. 160.
    Aruna I, Mehta BR, Malhotra LK et al (2004) A color-neutral, Gd nanoparticle switchable mirror with improved optical contrast and response time. Adv Mater 16(2):169–173CrossRefGoogle Scholar
  161. 161.
    Giebels IAME, Isidorsson J, Griessen R (2004) Highly absorbing black Mg and rare-earth-Mg switchable mirrors. Phys Rev B 69(20):205111CrossRefGoogle Scholar
  162. 162.
    Baldi A, Gonzalez-Silveira M, Palmisano V et al (2009) Destabilization of the Mg-H system through elastic constraints. Phys Rev Lett 102(22):226102CrossRefGoogle Scholar
  163. 163.
    Baldi A, Palmisano V, Gonzalez-Silveira M et al (2009) Quasifree Mg-H thin films. Appl Phys Lett 95(7):071903CrossRefGoogle Scholar
  164. 164.
    Di Vece M, Zevenhuizen SJM, Kelly JJ (2002) Optical switching properties from isotherms of Gd and GdMg hydride mirrors. Appl Phys Lett 81(7):1213–1215CrossRefGoogle Scholar
  165. 165.
    Armitage R, Rubin M, Richardson T et al (1999) Solid-state gadolinium-magnesium hydride optical switch. Appl Phys Lett 75(13):1863–1865CrossRefGoogle Scholar
  166. 166.
    Richardson TJ, Slack JL, Armitage RD et al (2001) Switchable mirrors based on nickel-magnesium films. Appl Phys Lett 78(20):3047–3049CrossRefGoogle Scholar
  167. 167.
    Borsa DM, Lohstroh W, Gremaud R et al (2007) Critical composition dependence of the hydrogenation of Mg2Ni thin films. J Alloys Compds 428(1–2):34–39CrossRefGoogle Scholar
  168. 168.
    Pasturel M, Wijngaarden RJ, Lohstroh W et al (2007) Influence of the chemical potential on the hydrogen sorption kinetics of Mg2Ni/TM/Pd (TM = transition metal) trilayers. Chem Mater 19(3):624–633CrossRefGoogle Scholar
  169. 169.
    Westerwaal RJ, Slaman M, Broedersz CP et al (2006) Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation. J Appl Phys 100(6)Google Scholar
  170. 170.
    Richardson TJ, Slack JL, Farangis B et al (2002) Mixed metal films with switchable optical properties. Appl Phys Lett 80(8):1349–1351CrossRefGoogle Scholar
  171. 171.
    van Mechelen JLM, Noheda B, Lohstroh W et al (2004) Mg-Ni-H films as selective coatings: tunable reflectance by layered hydrogenation. Appl Phys Lett 84(18):3651–3653CrossRefGoogle Scholar
  172. 172.
    Lohstroh W, Westerwaal RJ, van Mechelen JLM et al (2004) Structural and optical properties of Mg2NiHx switchable mirrors upon hydrogen loading. Phys Rev B 70(16):165411CrossRefGoogle Scholar
  173. 173.
    Wang Y, Pálsson GK, Raanaei H et al (2008) The influence of amorphous Al2O3 coating on hydrogen uptake of materials. J Alloys Compd 464(1–2):L13–L16CrossRefGoogle Scholar
  174. 174.
    Kerssemakers JWJ, van der Molen SJ, Koeman NJ et al (2000) Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors. Nature 406(6795):489–491CrossRefGoogle Scholar
  175. 175.
    Olk CH, Tibbetts GG, Simon D et al (2003) Combinatorial preparation and infrared screening of hydrogen sorbing metal alloys. J Appl Phys 94(1):720–725CrossRefGoogle Scholar
  176. 176.
    Baldi A, Gremaud R, Borsa DM et al (2009) Nanoscale composition modulations in MgyTi1–yHx thin film alloys for hydrogen storage. Int J Hydrogen Energy 34(3):1450–1457CrossRefGoogle Scholar
  177. 177.
    Gremaud R, Gonzalez-Silveira M, Pivak Y et al (2009) Hydrogenography of PdHx thin films: Influence of H-induced stress relaxation processes. Acta Mater 57(4):1209–1219CrossRefGoogle Scholar
  178. 178.
    Pivak Y, Gremaud R, Gross K et al (2009) Effect of the substrate on the thermodynamic properties of PdHx films studied by hydrogenography. Scr Mater 60(5):348–351CrossRefGoogle Scholar
  179. 179.
    Gremaud R, Broedersz CP, Borgschulte A et al (2010) Hydrogenography of MgyNi1–yHx gradient thin films: Interplay between the thermodynamics and kinetics of hydrogenation. Acta Mater 58(2):658–668CrossRefGoogle Scholar
  180. 180.
    Gremaud R, van Mechelen JLM, Schreuders H et al (2009) Structural and optical properties of MgyNi1–yHx gradient thin films in relation to the as-deposited metallic state. Int J Hydrogen Energy 34(21):8951–8957CrossRefGoogle Scholar
  181. 181.
    Vermeulen P, Wondergem HJ, Graat PCJ et al (2008) In situ electrochemical XRD study of (de)hydrogenation of MgyTi100–y thin films. J Mater Chem 18(31):3680–3687CrossRefGoogle Scholar
  182. 182.
    Gremaud R, Broedersz CP, Borsa DM et al (2007) Hydrogenography: an optical combinatorial method to find new light-weight hydrogen-storage materials. Adv Mater 19(19):2813–2817CrossRefGoogle Scholar
  183. 183.
    van den Berg AWC, Arean CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 6:668–681CrossRefGoogle Scholar
  184. 184.
    Shao HY (2005) Doctoral Dissertation of Peking UniversityGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations