Skip to main content

3D Reconstruction and Dehazing with Polarization Vision

  • Chapter
  • First Online:

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Polarization vision techniques have demonstrated effectiveness in a variety of application fields including computer vision. This chapter presents 3D reconstruction and image dehazing as examples to show the benefits of polarization vision techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical methods. Opt Eng 39(1):10–22

    Article  Google Scholar 

  2. Mattoccia S (2011) Stereo vision: algorithms and applications, University of Bologna

    Google Scholar 

  3. Olson CF, Abi-Rached H, Ye M, Hendrich JP (2003) Wide-baseline stereo vision for Mars rovers. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) proceedings, vol 2, pp 1302–1307

    Google Scholar 

  4. Prados E, Camilli F, Faugeras O (2006) A viscosity solution method for shape-from-shading without image boundary data. ESAIM: Math Model Num Anal 40(2):393–412

    Article  MathSciNet  MATH  Google Scholar 

  5. Cardenas-Garcia JF, Yao HG, Zheng S (1995) 3D reconstruction of objects using stereo imaging. Opt Lasers Eng 22(3):193–213

    Article  Google Scholar 

  6. Thelen A, Frey S, Hirsch S, Hering P (2009) Improvements in shape-from-focus for holographic reconstructions with regard to focus operators, neighborhood-size, and height value interpolation. IEEE Trans Image Process 18(1):151–157

    Article  MathSciNet  Google Scholar 

  7. Dellaert F, Seitz SM, Thorpe CE, Thrun S (2000) Structure from motion without correspondence. In: IEEE conference on computer vision and pattern recognition proceedings, vol 2, pp 557–564

    Google Scholar 

  8. Zeng Q (2009) Airborne LiDAR Point cloud data processing and 3D building reconstruction, Shanghai University

    Google Scholar 

  9. Zhang Y (2012) Research on three-dimensional topography measurement using structured light. Master’s Thesis, Harbin Engineering University

    Google Scholar 

  10. Zhao Y, Pan Q (2011) Imaging spectropolarimetric remote sensing and application. National Defense Industry Press

    Google Scholar 

  11. Rahmann S, Canterakis N (2001) Reconstruction of specular surfaces using polarization imaging. In: IEEE conference on computer vision and pattern recognition

    Google Scholar 

  12. Miyazaki D, Kagesawa M, Ikeuchi K (2004) Transparent surface modeling from a pair of polarization images. IEEE Trans Patt Anal Mach Intell 26(1):73–82

    Google Scholar 

  13. Atkinson GA, Hancock ER (2006) Recovery of surface orientation from diffuse polarization. IEEE Trans Image Process 15(6):1653–1664

    Article  Google Scholar 

  14. Huynh CP, Robles-Kelly A, Hancock E (2010) Shape and refractive index recovery from single-view polarisation images. In: IEEE conference on computer vision and pattern recognition, pp 1229–1236

    Google Scholar 

  15. Atkinson GA, Hancock ER (2007) Shape estimation using polarization and shading from two views. IEEE Trans Pattern Anal Mach Intell 29(11):2001–2017

    Article  Google Scholar 

  16. Mahmoud AH, El-Melegy MT, Farag AA (2012) Direct method for shape recovery from polarization and shading. In: IEEE international conference on image processing, pp 1769–1772

    Google Scholar 

  17. Morel O, Meriaudeau F, Stolz C, Gorria P (2005) Polarization imaging applied to 3D reconstruction of specular metallic surfaces. In: International Society for Optics and Photonics. Electronic Imaging, pp 178–186

    Google Scholar 

  18. Kovesi P (2005) Shapelets correlated with surface normals produce surfaces. In: IEEE international conference on computer vision, vol 2, pp 994–1001

    Google Scholar 

  19. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: IEEE international conference on computer vision, pp 2201–2208

    Google Scholar 

  20. Crosby F (2004) Stokes vector component versus elementary factor performance in a target detection algorithm. In: Proceedings of SPIE 5432, pp 1–11

    Google Scholar 

  21. Fattal R (2008) Single image dehazing. ACM Trans Graph 27(3):72

    Article  Google Scholar 

  22. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  23. Kopf J, Neubert B, Chen B, Cohen M, Cohen-Or D, Deussen O, Lischinski D (2008) Deep photo: Model-based photograph enhancement and viewing. ACM Trans Graph 27(5):116

    Article  Google Scholar 

  24. Tan RT (2008) Visibility in bad weather from a single image. In: IEEE Conference on computer vision and pattern recognition, pp 1–8

    Google Scholar 

  25. Nishino K, Kratz L, Lombardi S (2012) Bayesian defogging. Int J Comput Vision 98(3):263–278

    Article  MathSciNet  Google Scholar 

  26. Schechner YY, Narasimhan SG, Nayar SK (2001) Instant dehazing of images using polarization. In: IEEE international conference on computer vision and pattern recognition, vol 1, pp 325–332

    Google Scholar 

  27. Schechner YY, Narasimhan SG, Nayar SK (2003) Polarization-based vision through haze. Appl Opt 42(3):511–525

    Article  Google Scholar 

  28. Schechner YY, Karpel N (2004) Recovering scenes by polarization analysis. IEEE Techno-ocean 3:1255–1261

    Google Scholar 

  29. Shwartz S, Namer E, Schechner YY (2004) Blind haze separation. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 1984–1991

    Google Scholar 

  30. Namer E, Shwartz S, Schechner YY (2009) Skyless polarimetric calibration and visibility enhancement. Opt Express 17(2):472–493

    Article  Google Scholar 

  31. Miyazaki D, Akiyama D, Baba M. Furukawa R, Hiura S, Hiura N (2013) Polarization-based dehazing using two reference objects. In: IEEE international conference on computer vision workshops, pp 852–859

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y., Yi, C., Kong, S.G., Pan, Q., Cheng, Y. (2016). 3D Reconstruction and Dehazing with Polarization Vision. In: Multi-band Polarization Imaging and Applications. Advances in Computer Vision and Pattern Recognition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49373-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49373-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49371-7

  • Online ISBN: 978-3-662-49373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics