Skip to main content

Bio-inspired Multi-band Polarization Imaging

  • Chapter
  • First Online:
  • 1379 Accesses

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Multi-band polarization imaging has a variety of applications including land cover classification, military target detection, 3D surface reconstruction, and glare/shadow removal. A comprehensive utilization of spatial, spectral, and polarization information is effective to detect hidden or camouflaged targets which may not be discoverable by traditional optical imaging techniques. Present multi-band polarization sensors rely on dispersion, beam split or interference to obtain spectral information, while polarization information in different direction is acquired by changing polarization angles]. Acquisition of multiple images in different spectral bands and polarization angles may take a relatively long time, a large amount of data, and limited field of view. Conventional multi-band polarization imaging techniques may not satisfy the requirements in modern warfare in terms of dynamic environments, larger field of view, and fast response time. Recent research indicates that some aquatic organisms like dragonfly nymphs, mantis shrimps, and cuttlefish hunt with their multi-band polarization vision. Such observations sparked the studies on multi-band polarization imaging techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ibrahim I, Yuen P, Hong K, Chen T, Soori U, Jackman J, Richardson M (2012) Illumination invariance and shadow compensation via spectro-polarimetry technique. Opt Eng 51(10):107004

    Article  Google Scholar 

  2. Zhao Y, Pan Q, Cheng Y (2011) Image spectropolarimetric remote sensing and application. National Defense Industry Press, Beijing

    Google Scholar 

  3. Barney L, Hammond JI, Sih A (2009) Dragonfly larvae and tadpole frog space use games in varied light conditions. Behav Ecol 20(1):13–21

    Article  Google Scholar 

  4. Chiou TH, Allen RP (2012) A novel function for a carotenoid: astaxanthin used as a polarizer for visual signaling in a mantis shrimp. J Exp Biol 215:584–589

    Article  Google Scholar 

  5. Luttbeg B, Hammond JI, Sih A (2009) Dragonfly larvae and tadpole frog space use games in varied light conditions. Behav Ecol 20(1):13–21

    Article  Google Scholar 

  6. Kleinlogel S, Marshall NJ (2006) Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol 209(21):4262–4272

    Article  Google Scholar 

  7. Mathias FW, Velez MM (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in drosophila. Curr Biol 22:12–20

    Article  Google Scholar 

  8. Pignatelli V, Temple SE, Chiou TH, Roberts NW, Colin SP, Marshall NJ (2011) Behavioral relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Philos Trans Royal Soc B: Biol Sci 366(1565):734–741

    Article  Google Scholar 

  9. Cronin TW, Hariyama T (2002) Spectral sensitivity in crustacean eyes. In: the crustacean nervous system, Springer, Heidelberg, pp 499–511

    Google Scholar 

  10. Marshall NJ, Land MF, King CA, Cronin TW (1991) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: the detection of polarized light. Philos Trans: Biol Sci 334(1269):33–56

    Article  Google Scholar 

  11. Stowasser A, Buschbeck EK (2012) Electrophysiological evidence for polarization sensitivity in the camera-type eyes of the aquatic predacious insect larva Thermonectus marmoratus. J Exp Biol 215(20):3577–3586

    Article  Google Scholar 

  12. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47(6):368–379

    Article  Google Scholar 

  13. Johnsen S, Marshall NJ, Widder EA (2011) Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton. Philos Trans R Soc B: Biol Sci 366(1565):655–670

    Article  Google Scholar 

  14. Talbot CM, Marshall JN (2011) The retinal topography of three species of coleoid cephalopod: significance for perception of polarized light. Philos Trans R Soc B: Biol Sci 366(1565):724–733

    Article  Google Scholar 

  15. Thoen HH, How MJ, Chiou T-H, Marshall JN (2014) A different form of color vision in mantis shirimp. Sci 343(6169):411–413

    Article  Google Scholar 

  16. Guo F, Zheng YP, Wang K (2012) Lenses matching of compound eye for target positioning. Int Soc Opt Photonics, 84200B–84200B-6

    Google Scholar 

  17. Gong X, Yu W, Zhang H (2013) Process in design and fabrication of artifical compound eye optical systems. Chin Opt 6(1):34

    Article  Google Scholar 

  18. Bybee SM, Johnson KK (2012) All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye. Org Diversity Evol 12(3):241–250

    Article  Google Scholar 

  19. Sarkar M Natural TA (2013) Artificial compound eye a biologically inspired CMOS image sensor. Springer, Heidelberg, pp 13–48

    Google Scholar 

  20. Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci 1(3):248–272

    Article  MathSciNet  MATH  Google Scholar 

  21. Candès EJ, Tao T (2010) The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080

    Article  MathSciNet  Google Scholar 

  22. Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. University of Illinois at Urbana Champaign, Technical Report UILU-ENG-09-2215

    Google Scholar 

  23. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Google Scholar 

  24. Candès EJ, Li X, Ma Y, Weight J (2011) Robust principal component analysis. J ACM 58(3):11

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao Y, Yang J (2015) Hyperspectral image denoising via sparsity and low rank. IEEE Trans. Geosci and Remote Sens 53(1):296–308

    Article  Google Scholar 

  26. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  27. Zhang L, Zhang L, Mou X (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

  28. Chan WS, Lam EY, Ng MK, Mak GY (2007) Super-resolution reconstruction in a computational compound-eye imaging system. Multidimension Syst Signal Process 18(2–3):83–101

    Article  MathSciNet  MATH  Google Scholar 

  29. Shogenji R, Kitamura Y, Yamada K, Miyatake S, Tanida J (2004) Multispectral imaging using compact compound optics. Opt Express 12(8):1643–1655

    Article  Google Scholar 

  30. Yamada K, Takahashi H (2008) Small 3D image capturing system by TOMBO. In: Society of photo-optical instrumentation engineers (SPIE) conference series 6805, p 33

    Google Scholar 

  31. Shogenji R, Kitamura Y, Yamada K, Miyatake S, Tanida J (2004) Bimodal fingerprint capturing system based on compound-eye imaging module. Appl Opt 43(6):1355–1359

    Article  Google Scholar 

  32. Radtke D, Duparré J, Zeitner UD, TŘnnermann A (2007) Laser lithographic fabrication and characterization of a spherical artificial compound eye. Opt Express 15(6):3067–3077

    Google Scholar 

  33. Di S, Lin H, Du R (2009) An artificial compound eyes imaging system based on MEMS technology. Int Conf Robot Biomimetics (ROBIO) 13–18

    Google Scholar 

  34. Duparré J, Wippermann F, Dannberg P, Reimann A (2005) Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Opt Express 13(26):10539–10551

    Article  Google Scholar 

  35. Li L, Yi AY (2010) Development of a 3D artificial compound eye. Opt Express 18(17):18125–18137

    Article  Google Scholar 

  36. Zhang H, Lu Z, Wang R (2006) Study on curved compound eye imaging system. Opt Precis Eng 14(3):346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y., Yi, C., Kong, S.G., Pan, Q., Cheng, Y. (2016). Bio-inspired Multi-band Polarization Imaging. In: Multi-band Polarization Imaging and Applications. Advances in Computer Vision and Pattern Recognition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49373-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49373-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49371-7

  • Online ISBN: 978-3-662-49373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics