Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 1301 Accesses

Abstract

In remote sensing, imaging instruments measure the energy of the light reflected or radiated from an object of interest in a number of different wavelength bands to observe physical as well as chemical characteristics of the object such as material composition and surface temperature distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang P, Zhenping B, Xiangnan L (2001) Remote sensing introduction. Higher Education Press, Beijing

    Google Scholar 

  2. Zhao Y, Gong P, Pan Q (2008) Object detection by spectropolarimeteric imagery fusion. IEEE Trans Geosci Remote Sens 46(10):3337–3345

    Article  Google Scholar 

  3. Zhao Y, Zhang L, Zhang D, Pan Q (2009) Object separation by polarimetric and spectral imagery fusion. Comput Vis Image Underst 113(8):855–866

    Article  Google Scholar 

  4. Zhao Y, Peng Q, Yi C, Kong SG (2016) Multiband polarization imaging. J Sens 5985673

    Google Scholar 

  5. Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Willey Publishers, New York

    Google Scholar 

  6. Farrell MD Jr (2005) Analysis of modeling, training, and dimension reduction approaches for target detection in hyperspectral imagery. PhD Dissertation, Georgia Institute of Technology

    Google Scholar 

  7. Chang CI (2003) Hyperspectral imaging: techniques for spectral detection and classification. Kluwer Academic, Dordrecht

    Google Scholar 

  8. Dollfus A (1975) Optical polarimetry of the Galilean satellites of Jupiter. Icarus 25(3):416–431

    Article  Google Scholar 

  9. Egan WG (1985) Photometry and polarization in remote sensing. Elsevier, New York

    Google Scholar 

  10. Liu J (1999) Research on tunable polarization spectral imaging techniques. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science

    Google Scholar 

  11. John WW, Howard ST, Mark AP (2001) Image processing and classification for the UK Remote Minefield Detection System infrared polarimetric camera. Proc SPIE 4394:139–152

    Article  Google Scholar 

  12. Drouillard TF, Searcy PA, Davis SR, Uberna RJ, Herke RA, Anderson MH, Rommel SD, Anthony EB, Damiao VB (2005) Stokes polarimetry using liquid-crystal variable retarders. Application Note, Meadowlark Optics (www.meadowlark.com)

  13. Mehdi A, Francois G, Philippe R, Grisard A, Lallier E, Doffi D (2004) Multispectral polarimeteric imaging with coherent illumination: towards higher image contrast. Proc SPIE 5432:134–144

    Google Scholar 

  14. Egan WG, Johnson WR, Whitehead VS (1991) Terrestrial polarization imagery obtained from the space shuttle: characterization and interpretation. Appl Opt 30(4):435–442

    Article  Google Scholar 

  15. Egan WG, Michael JD (2002) Synthesis of optical polarization signatures of military aircraft. In: International symposium on optical science and technology, International Society for Optics and Photonics

    Google Scholar 

  16. Neal RM, David D, John G (2005) Laboratory results using an active wollaston polarimeter. Proc SPIE 5888:1–5

    Google Scholar 

  17. Zhang Z, Wang M, Wang P (1997) Cirrus detector—a special instrument for detecting atmospheric aerosol cloud. In: The 13th annual meeting of China geophysical society

    Google Scholar 

  18. Yang W, Pan L, Hong J (2004) Radiation calibration of multi-spectral polarized CCD. High Technol Lett 14(10):11–15

    Google Scholar 

  19. Zhao J (2013) Developments of polarization imaging technology. Infrared Technol 35(12):743–750

    Google Scholar 

  20. Wolff LB (1997) Polarization vision: a new sensory approach to image understanding. Image Vis Comput 15:81–93

    Article  Google Scholar 

  21. Frost JW, Nasraddine F, Rodriguez J, Andino I, Cairns B (2005) A handheld polarimeter for aerosol remote sensing. In: Proceedings of SPIE, vol 5888

    Google Scholar 

  22. Kohzo H, Hirokimi S, Hiromichi Y, Kurosaki H (2004) Application of an imaging spectropolarimeter to agro-environmental sciences. Proc SPIE 5234:639–647

    Google Scholar 

  23. Park JD, Jones WL, Zec J (1999) Sea ice classification using a neural network algorithm for NSCAT. In: IEEE international conference in geoscience and remote sensing symposium (IGARSS), vol 2, pp 1040–1043

    Google Scholar 

  24. Fujikake H, Takizawa K, Aida T, Kikuchi H, Fujii T (1998) Electrically-controllable liquid crystal polarizing filter for eliminating reflected light. Opt Rev 5(2):93–98

    Article  Google Scholar 

  25. Zhao Y, Zhang L, Pan Q (2009) Spectropolarimetric imaging for pathological analysis of skin. Appl Opt 48(10):D236–D246

    Article  Google Scholar 

  26. Du A (2006) Research on key technologies of polarization imaging detection. Master’s thesis, Northwestern Polytechnical University

    Google Scholar 

  27. Bishop CA, Liu JG, Mason PJ (2011) Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan province, China. Int J Remote Sens 32(9):2409–2426

    Article  Google Scholar 

  28. Huang W, Lamb DW, Niu Z, Zhang Y, Wang J (2007) Identification of yellow rust in wheat using in-situ spectral reflectance measurement and airborne hyperspectral imaging. Precision Agric 8(4–5):187–197

    Article  Google Scholar 

  29. Crosby F (2004) Stokes vector component versus elementary factor performance in a target detection algorithm. Proc SPIE 5432:1–11

    Article  Google Scholar 

  30. Tiwari KC, Arora MK, Singh D (2011) An assessment of independent components analysis for detection of military targets from hyperspectral images. Int J Appl Earth Obs Geoinf 13(5):730–740

    Article  Google Scholar 

  31. Kefauver SC, Peñuelas J, Ustin SL (2012) Application of hyperspectral remote sensing and GIS for assessing forest health and air pollution. In: IEEE international conference on geoscience and remote sensing symposium (IGARSS), pp 3379–3382

    Google Scholar 

  32. Xue Z, Gao H, Liu P, Liu J (2011) Study on the effects of simulated acid rain on wheat using the spectral reflectance at canopy and leaf level. J Agro-Environ Sci 30(2):228–235

    Google Scholar 

  33. Kruse FA, Kim AM, Runyon SC, Carlisle SC, Clasen CC, Esterline CH, Olsen RC (2014) Multispectral, hyperspectral and LiDAR remote sensing and geographic information fusion for improved earthquake response. In: SPIE defense and security

    Google Scholar 

  34. Balasubramanian UR, Saravanavel J, Gunasekaran S (2013) Ore mineral discrimination using hyperspectral remote sensing—a field-based spectral analysis. Arab J Geosci 6(12):4709–4716

    Article  Google Scholar 

  35. Anderson MC, Allen RG, Morse A, Kustas WP (2012) Use of landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ 122:50–65

    Article  Google Scholar 

  36. Pulvirenti L, Chini M, Pierdicca N, Guerriero L, Ferrazzoli P (2011) Flood monitoring using multi-temporal cosmo-skymed data: image segmentation and signature interpretation. Remote Sens Environ 115(4):990–1002

    Article  Google Scholar 

  37. Zhang Y (2012) Research on three-dimensional topography measurement using structured light. Master’s thesis, Harbin Engineering University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 National Defense Industry Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, Y., Yi, C., Kong, S.G., Pan, Q., Cheng, Y. (2016). Introduction. In: Multi-band Polarization Imaging and Applications. Advances in Computer Vision and Pattern Recognition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49373-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49373-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49371-7

  • Online ISBN: 978-3-662-49373-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics