Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 377))

  • 1623 Accesses

Abstract

Being one of merging technologies, power electronic transformer (PET) is attracting more and more attentions. In this review, all the existing PET technologies for railway traction applications are comprehensively reviewed in order to provide a solid background of PET designs. Also, the basic of high-frequency transformer which is the key technology of PET is reviewed. The trend of PET is summarized as the guidelines for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dujic Z, Steinke G, Bianda E, Lewdeni-Schmid S, Zhao C, Steinke JK (2013) Characterization of a 6.5 kV IGBT for medium-voltage high-power resonant DC-DC converter. In: 2013 twenty-eighth annual IEEE applied power electronics conference and exposition (APEC), pp 1438–1444

    Google Scholar 

  2. Dujic D, Zhao C, Mester A, Steinke JK, Weiss M, Lewdeni-Schmid S, Chaudhuri T, Stefanutti P (2013) Power electronic traction transformer-low voltage prototype. IEEE Trans Power Electron 28:5522–5534

    Article  Google Scholar 

  3. Hoffmann H, Piepenbreier B (2011) Medium frequency transformer for rail application using new materials. In: Electric Drives Production Conference (EDPC), 2011 1st International, pp 192–197

    Google Scholar 

  4. Dujic D, Kieferndorf F, Canales F, Drofenik U (2012) Power electronic traction transformer technology. In: Proceedings of International Power Electronics & Motion Control Conference, vol 1, pp 636–642

    Google Scholar 

  5. Hugo N, Stefanutti P, Pellerin M, Akdag A (2007) Power electronics traction transformer. In: 2007 European conference on power electronics and applications, pp 1–10

    Google Scholar 

  6. Energy conversation program for commercial equipment, distribution transformers energy conversation standards. CFR Standard 431, Oct. 2007

    Google Scholar 

  7. Besselmann T, Mester A, Dujic Z (2014) Power electronic traction transformer: efficiency improvements under light-load conditions. IEEE Trans Power Electron 29:3971–3981

    Article  Google Scholar 

  8. Dujic D, Mester A, Chaudhuri T, Coccia A, Canales F, Steinke JK (2011) Laboratory scale prototype of a power electronic transformer for traction applications. In: Proceedings of the 2011-14th European conference on power electronics and applications (EPE 2011), pp 1–10

    Google Scholar 

  9. Zhao C, Dujic Z, Mester A, Steinke JK, Weiss M, Lewdeni-Schmid S, Chaudhuri T, Stefanutti P (2014) Power electronic traction transformer-medium voltage prototype. Ind Electron IEEE Trans 61:3257–3268

    Article  Google Scholar 

  10. Zhao C, Lewdeni-Schmid S, Steinke JK, Weiss M, Chaudhuri T, Pellerin M, Duron J, Stefanutti P (2011) Design, implementation and performance of a modular power electronic transformer (PET) for railway application. In: Proceedings of the 2011-14th European conference on power electronics and applications (EPE 2011), pp 1–10

    Google Scholar 

  11. Zhao C, Weiss M, Mester A, Lewdeni-Schmid S, Dujic D, Steinke JK, Chaudhuri T (2012) Power electronic transformer (PET) converter: design of a 1.2 MW demonstrator for traction applications. In: International symposium on power electronics power electronics electrical drives automation & motion, pp 855–860

    Google Scholar 

  12. Martin J, Ladoux P, Chauchat B, Casarin J, Nicolau S (2008) Medium frequency transformer for railway traction: soft switching converter with high voltage semi-conductors., In: International symposium on power electronics, electrical drives, automation and motion, SPEEDAM 2008, pp 1180–1185

    Google Scholar 

  13. Casarin J, Ladoux P, Chauchat B, Dedecius D, Laugt E (2012) Evaluation of high voltage SiC diodes in a medium frequency AC/DC converter for railway traction. In: 2012 international symposium on power electronics, electrical drives, automation and motion (SPEEDAM), pp 1182–1186

    Google Scholar 

  14. Casarin J, Ladoux P, Martin J, Chauchat B (2010) AC/DC converter with medium frequency link for railway traction application. Evaluation of semiconductor losses and operating limits. In: 2010 International symposium on power electronics electrical drives automation and motion (SPEEDAM), pp 1706–1711

    Google Scholar 

  15. Escrouzailles V, Castellazzi A, Solomalala P, Mermet-Guyennet M (2011) Finite-element based comparative analysis of the thermo-mechanical stresses affecting Si and SiC power switches. In: ICPE 2011-ECCE Asia, pp 1077–1082

    Google Scholar 

  16. Steiner M, Reinold H (2007) Medium frequency topology in railway applications. In: European conference on power electronics & applications, pp 1–10

    Google Scholar 

  17. Youssef MZ, Jain PK (2007) Series-parallel resonant converter in self-sustained oscillation mode with the high-frequency transformer-leakage-inductance effect: analysis, modeling, and design. IEEE Trans Industr Electron 54:1329–1341

    Article  Google Scholar 

  18. Youssef MZ, Pinheiro H, Jain PK (2006) Self-sustained phase-shift modulated resonant converters: modeling, design, and performance. Power Electron IEEE Trans 21:401–414

    Article  Google Scholar 

  19. Youssef M, Qahouq JAA, Orabi M (2010) Analysis and design of LCC resonant inverter for the transportation systems applications. In: Applied power electronics conference and exposition (APEC), 2010 twenty-fifth annual IEEE, pp 1778–1784

    Google Scholar 

  20. Youssef M, Qahouq JAA, Orabi M (2010) Electromagnetic compatibility results for an LCC resonant inverter for the transportation systems. In: Applied power electronics conference and exposition (APEC), 2010 twenty-fifth annual IEEE, pp 1800–1803

    Google Scholar 

  21. Glinka M, Marquardt R (2003) A new AC/AC-multilevel converter family applied to a single-phase converter. In: The fifth international conference on power electronics and drive systems, PEDS 2003, pp 16–23

    Google Scholar 

  22. Glinka M, Marquardt R (2005) A new AC/AC multilevel converter family. IEEE Trans Industr Electron 52:662–669

    Article  Google Scholar 

  23. Glinka M (2004) Prototype of multiphase modular-multilevel-converter with 2 MW power rating and 17-level—output-voltage. In: PESC record—IEEE annual power electronics specialists conference, vol 4, pp 2572–2576

    Google Scholar 

  24. Weigel J, Ag ANS, Hoffmann H (2009) High voltage IGBTs in medium frequency traction power supply. In: EPE European conference on power electronics & applications, pp 1–10

    Google Scholar 

  25. Hoffmann H, Piepenbreier B (2010) High voltage IGBTs and medium frequency transformer in DC-DC converters for railway applications. In: Power Electronics Electrical Drives Automation & Motion International Symposium on, pp 744–749

    Google Scholar 

  26. Hoffmann H, Piepenbreier B (2011) Medium frequency transformer in resonant switching DC/DC-converters for railway applications., In: Proceedings of the 2011-14th European conference on power electronics and applications (EPE 2011), pp 1–8

    Google Scholar 

  27. Lu J, Dawson F (2006) Analysis of Eddy current distribution in high frequency coaxial transformer with faraday shield. IEEE Trans Magn 42:665

    Google Scholar 

  28. Rauls MS, Novotny DW (1995) Multiturn high-frequency coaxial winding power transformers. IEEE Trans Ind Appl 31:112–118

    Article  Google Scholar 

  29. Mermet-Guyennet M (2010) New power technologies for traction drives. In: Power electronics electrical drives automation and motion (SPEEDAM), pp 719–723

    Google Scholar 

  30. Agheb E, Hoidalen HK (2012) Medium frequency high power transformers, state of art and challenges. In: 2012 International conference on renewable energy research and applications (ICRERA), pp 1–6

    Google Scholar 

  31. She X, Huang AQ, Burgos R (2013) Review of solid-state transformer technologies and their application in power distribution systems. Emerg Sel Top Power Electron IEEE J 1:186–198

    Article  Google Scholar 

  32. Herbert, E. (1986). Flat matrix transformers.US Patent 4665357

    Google Scholar 

  33. Kheraluwala MH, Novotny DW, Divan DM (1992) Coaxially wound transformers for high-power high-frequency applications. IEEE Trans Power Electron 7:54–62

    Article  Google Scholar 

  34. Tao H, Duarte JL, Hendrix MAM (2007) High-power three-port three-phase bidirectional DC-DC Converter. In: Industry applications conference, 42nd IAS annual meeting. Conference record of the 2007 IEEE, pp 2022–2029

    Google Scholar 

  35. Drofenik U, Canales F (2014) European trends and technologies in traction. In: Power electronics conference (IPEC-Hiroshima 2014—ECCE-ASIA), 2014 international, pp 1043–1049

    Google Scholar 

  36. Huang D, Ji S, Lee FC (2014) LLC resonant converter with matrix transformer. IEEE Trans Power Electron 29:4339–4347

    Article  Google Scholar 

  37. Interior UDO (2012) Transformers: basics, maintenance, and diagnostics: CreateSpace independent publishing platform

    Google Scholar 

  38. Bortis D, Biela J, Kolar JW (2010) Transient behavior of solid-state modulators with matrix transformers. IEEE Trans Plasma Sci 38:2785–2792

    Article  Google Scholar 

  39. Ngo KDT, Alpizar E, Watson JK (1995) Modeling of losses in a sandwiched-winding matrix transformer. IEEE Trans Power Electron 10:427–434

    Article  Google Scholar 

  40. Heinemann L (2002) An actively cooled high power, high frequency transformer with high insulation capability. In: Applied power electronics conference and exposition, APEC 2002. Seventeenth annual IEEE, pp 352–357

    Google Scholar 

  41. Taufiq J (2007) Power electronics technologies for railway vehicles. In: Power conversion conference—Nagoya, PCC ‘07, pp 1388–1393

    Google Scholar 

  42. Hwang CC, Tang PH, Jiang YH (2005) Thermal analysis of high-frequency transformers using finite elements coupled with temperature rise method. Electr Power Appl IEE Proc 152:832–836

    Article  Google Scholar 

  43. Tomczuk BZ, Koteras D, Waindok A (2014) Electromagnetic and temperature 3-D fields for the modular transformers heating under high-frequency operation. IEEE Trans Magn 50:317–320

    Article  Google Scholar 

  44. Xu J, Kubis A, Zhou K, Ye Z, Luo L (2013) Electromagnetic field and thermal distribution optimisation in shell-type traction transformers. IET Electr Power Appl 7:627–632

    Article  Google Scholar 

  45. Susa D (2005) Dynamic thermal modelling of power transformers. Power delivery IEEE Trans 20:197–204

    Article  Google Scholar 

  46. Susa D, Lehtonen M (2006) Dynamic thermal modeling of power transformers: further Development-part I. Power Delivery IEEE Trans 1961–1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghua Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, J., Shang, J., Huang, Z., Zhang, Z., Zhang, D. (2016). Review of Power Electronic Transformer in Railway Traction Applications. In: Jia, L., Liu, Z., Qin, Y., Ding, R., Diao, L. (eds) Proceedings of the 2015 International Conference on Electrical and Information Technologies for Rail Transportation. Lecture Notes in Electrical Engineering, vol 377. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49367-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49367-0_57

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49365-6

  • Online ISBN: 978-3-662-49367-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics