Skip to main content

Sportaktivität, Stress und das Gehirn

  • Chapter
  • First Online:
Book cover Handbuch Stressregulation und Sport

Part of the book series: Springer Reference Psychologie ((SRP))

Zusammenfassung

Dieses Kapitel befasst sich mit den positiven Wirkungen sportlicher Aktivität auf jene Gehirnstrukturen und -funktionen, die durch eine akute oder chronische Stressexposition beeinträchtigt werden. Die akuten und chronischen Effekte von Stress und Sport auf das Gehirn werden dazu zunächst isoliert betrachtet. Der Fokus liegt dabei auf dem präfrontalen Kortex, dem Hippocampus und den damit verbundenen kognitiven Funktionen. Anschließend werden die Erkenntnisse zu einem direkten Stresspuffereffekt sportlicher Aktivität auf das Gehirn ausführlich dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19, 468–478.

    Article  PubMed  Google Scholar 

  • Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10, 410–422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnsten, A. F., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89–99.

    Article  PubMed  Google Scholar 

  • Audiffren, M., Tomporowski, P. D., & Zagrodnik, J. (2008). Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychologica, 129, 410–419.

    Article  PubMed  Google Scholar 

  • Beck, J., Gerber, M., Brand, S., Pühse, U., & Holsboer-Trachsler, E. (2013). Executive function performance is reduced during occupational burnout but can recover to the level of healthy controls. Journal of Psychiatric Research, 47, 1824–1830.

    Article  PubMed  Google Scholar 

  • Braz, I. D., & Fisher, J. P. (2015). The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. Journal of Physiology, 594, 4471–4483.

    Google Scholar 

  • Brunoni, A. R., Lopes, M., & Fregni, F. (2008). A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression. International Journal of Neuropsychopharmacology, 11, 1169–1180.

    Article  PubMed  Google Scholar 

  • Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., Vanpatter, M., & Kramer, A. F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172–183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, Y.-K., & Etnier, J. L. (2009). Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise, 10, 19–24.

    Article  Google Scholar 

  • Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.

    Article  PubMed  Google Scholar 

  • Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L., & Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. Journal of Gerontology, 61, 1166–1170.

    Google Scholar 

  • Coles, K., & Tomporowski, P. D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26, 333–344.

    Article  PubMed  Google Scholar 

  • Conrad, C. D. (2006). What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? Behavioral and Cognitive Neuroscience Reviews, 5, 41–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews. Neuroscience, 6, 463–475.

    Article  PubMed  Google Scholar 

  • De Quervain, D. J., Henke, K., Aerni, A., Treyer, V., McGaugh, J. L., Berthold, T., Nitsch, R. M., Buck, A., Roozendaal, B., & Hock, C. (2003). Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. The European Journal of Neuroscience, 17, 1296–1302.

    Article  PubMed  Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135.

    Article  PubMed  Google Scholar 

  • Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145, 79–83.

    Article  PubMed  Google Scholar 

  • Domes, G., Rothfischer, J., Reichwald, U., & Hautzinger, M. (2005). Inverted-U function between salivary cortisol and retrieval of verbal memory after hydrocortisone treatment. Behavioral Neuroscience, 119, 512–517.

    Article  PubMed  Google Scholar 

  • Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Structure and Function, 213, 93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncko, R., Johnson, L., Merikangas, K., & Grillon, C. (2009). Working memory performance after acute exposure to the cold pressor stress in healthy volunteers. Neurobiology of Learning and Memory, 91, 377–381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83, 764–770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekkekakis, P. (2009). Illuminating the black box: Investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy. Journal of Sport and Exercise Psychology, 31, 505–553.

    Article  PubMed  Google Scholar 

  • Erickson, K. I., Prakash, R. S., Voss, M. W., Chaddock, L., Hu, L., Morris, K. S., White, S. M., Wójcicki, T. R., McAuley, E., & Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030–1039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., Mc Auley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–3022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., & Palmer, T. D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18, 2803–2812.

    Article  PubMed  Google Scholar 

  • Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annual Review of Neuroscience, 32, 33–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleshner, F. (2005). Physical activity and stress resistance: Sympathetic nervous system adaptations prevent stress-induced immunosuppression. Exercise and Sport Sciences Reviews, 33, 120–126.

    Article  PubMed  Google Scholar 

  • Frodl, T., & O’Keane, V. (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease, 52, 24–37.

    Article  PubMed  Google Scholar 

  • Gagnon, S. A., & Wagner, A. D. (2016). Acute stress and episodic memory retrieval: Neurobiological mechanisms and behavioral consequences. Annals of the New York Academy of Sciences, 1396, 55–75.

    Article  Google Scholar 

  • Gerber, M. (2017). Physiologische Wirkmechanismen des Sports unter Stress. In R. Fuchs & M. Gerber (Hrsg.), Handbuch Stressregulation und Sport. Heidelberg: Springer.

    Google Scholar 

  • Greenwood, B. N., & Fleshner, M. (2011). Exercise, stress resistance, and central serotonergic systems. Exercise and Sport Sciences Reviews, 39, 140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin, W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., & Kelly, M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104, 934–941.

    Article  Google Scholar 

  • Guiney, H., & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20, 73–86.

    Article  Google Scholar 

  • Hains, A. B., Vu, M. A. T., MacIejewski, P. K., Van Dyck, C. H., Gottron, M., & Arnsten, A. F. T. (2009). Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proceedings of the National Academy of Sciences, 106, 17957–17962.

    Article  Google Scholar 

  • Hamilton, G. F., Criss, K. J., & Klintsova, A. Y. (2015). Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats. Synapse, 69, 405–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hänsel, A., & Känel, R. V. (2008). The ventro-medial prefrontal cortex: A major link between the autonomic nervous system, regulation of emotion, and stress reactivity? BioPsychoSocial Medicine, 2, 1. doi:10.1186/1751-0759-2-21.

    Article  Google Scholar 

  • Hansen, A. L., Johnsen, B. H., Sollers, J., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. European Journal of Applied Physiology, 93, 263–272.

    Article  PubMed  Google Scholar 

  • Heine, V. M., Zareno, J., Maslam, S., Joels, M., & Lucassen, P. J. (2005). Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. The European Journal of Neuroscience, 21, 1304–1314.

    Article  PubMed  Google Scholar 

  • Henckens, M. J., Pu, Z., Hermans, E. J., Van Wingen, G. A., Joëls, M., & Fernández, G. (2012). Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing. Human Brain Mapping, 33, 2885–2897.

    Article  PubMed  Google Scholar 

  • Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159, 1044–1054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopkins, M. E., Davis, F. C., Vantieghem, M. R., Whalen, P. J., & Bucci, D. J. (2012). Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, 215, 59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu, F. C., Garside, M. J., Massey, A. E., & McAllister-Williams, R. H. (2003). Effects of a single dose of cortisol on the neural correlates of episodic memory and error processing in healthy volunteers. Psychopharmacology, 167, 431–442.

    Article  PubMed  Google Scholar 

  • Jacubowski, A., Abeln, V., Vogt, T., Yi, B., Chouker, A., Fomina, E., Strüder, H. K., & Schneider, S. (2015). The impact of long-term confinement and exercise on central and peripheral stress markers. Physiology & Behavior, 152, 106–111.

    Article  Google Scholar 

  • Joëls, M., & Baram, T. Z. (2009). The neuro-symphony of stress. Nature Reviews. Neuroscience, 10, 459–466.

    PubMed  PubMed Central  Google Scholar 

  • Joëls, M., Karst, H., Alfarez, D., Heine, V. M., Qin, Y., Van Riel, E., Verkuyl, M., Lucassen, P. J., & Krugers, H. J. (2004). Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus. Stress, 7, 221–231.

    Article  PubMed  Google Scholar 

  • Kasten, N., & Fuchs, R. (2017). Methodische Aspekte der Stressforschung. In R. Fuchs & M. Gerber (Hrsg.), Handbuch Stressregulation und Sport. Heidelberg: Springer.

    Google Scholar 

  • Klaperski, S. (2017). Exercise, stress and health: The stress-buffering effect of exercise. In R. Fuchs & M. Gerber (Hrsg.), Handbuch Stressregulation und Sport. Heidelberg: Springer.

    Google Scholar 

  • Koenigs, M., & Grafman, J. (2009). The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex. Behavioural Brain Research, 201, 239–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus, R. M., Stallings, H. W., Yeager, R. C., & Gavin, T. P. (2004). Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. Journal of Applied Physiology, 96, 1445–1450.

    Article  PubMed  Google Scholar 

  • Kubesch, S., Bretschneider, V., Freudenmann, R., Weidenhammer, N., Lehmann, M., Spitzer, M., & Gron, G. (2003). Aerobic endurance exercise improves executive functions in depressed patients. Journal of Clinical Psychiatry, 64, 1005–1012.

    Google Scholar 

  • Kwon, D.-H., Kim, B.-S., Chang, H., Kim, Y.-I., Jo, S. A., & Leem, Y.-H. (2013). Exercise ameliorates cognition impairment due to restraint stress-induced oxidative insult and reduced BDNF level. Biochemical and Biophysical Research Communications, 434, 245–251.

    Article  PubMed  Google Scholar 

  • Labban, J. D., & Etnier, J. L. (2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82, 712–721.

    Article  PubMed  Google Scholar 

  • Lagarde, G., Doyon, J., & Brunet, A. (2010). Memory and executive dysfunctions associated with acute posttraumatic stress disorder. Psychiatry Research, 177, 144–149.

    Article  PubMed  Google Scholar 

  • Lee, T., Jarome, T., Li, S. J., Kim, J. J., & Helmstetter, F. J. (2009). Chronic stress selectively reduces hippocampal volume in rats: A longitudinal MRI study. Neuroreport, 20, 1554–1558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis, R. S., Weekes, N. Y., & Wang, T. H. (2007). The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biological Psychology, 75, 239–247.

    Article  PubMed  Google Scholar 

  • Lezak, M. D. (2012). Neuropsychological assessment. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences, 106, 912–917.

    Article  Google Scholar 

  • Ludyga, S., Hottenrott, K., & Gronwald, T. (2015). Einfluss verschiedener Belastungssituationen auf die EEG-Aktivität. Deutsche Zeitschrift fur Sportmedizin, 2015, 113–120.

    Article  Google Scholar 

  • Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53, 1611–1626.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., Gillin, C. J., & Hauger, R. L. (1999). Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose–response study in humans. Behavioral Neuroscience, 113, 420–430.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209–237.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445.

    Article  PubMed  Google Scholar 

  • Maass, A., Düzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., Lövden, M., Lindenberger, U., Bäckman, L., Braun-Dullaeus, R., Ahrens, D., Heinze, H. J., Müller, N. G., & Düzel, E. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular Psychiatry, 20, 585–593.

    Article  PubMed  Google Scholar 

  • Mandyam, C. D., Wee, S., Eisch, A. J., Richardson, H. N., & Koob, G. F. (2007). Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. The Journal of Neuroscience, 27, 11442–11450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansouri, F. A., Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 10, 141–152.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174–185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakajima, S., Ohsawa, I., Ohta, S., Ohno, M., & Mikami, T. (2010). Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice. Behavioural Brain Research, 211, 178–184.

    Article  PubMed  Google Scholar 

  • Nichols, N. R., Zieba, M., & Bye, N. (2001). Do glucocorticoids contribute to brain aging? Brain Research Brain Research Reviews, 37, 273–286.

    Article  PubMed  Google Scholar 

  • Nimchinsky, E. A., Sabatini, B. L., & Svoboda, K. (2002). Structure and function of dentritic spines. Annual Review of Physiology, 64, 313–353.

    Article  PubMed  Google Scholar 

  • Nowacka, M., & Obuchowicz, E. (2013). BDNF and VEGF in the pathogenesis of stress-induced affective diseases: An insight from experimental studies. Pharmacological Reports, 65, 535–546.

    Article  PubMed  Google Scholar 

  • Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: Mechanisms of regulation. Journal of Applied Physiology, 107, 1370–1380.

    Article  PubMed  Google Scholar 

  • Patki, G., Li, L., Allam, F., Solanki, N., Dao, A. T., Alkadhi, K., & Salim, S. (2014). Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiology & Behavior, 130, 47–53.

    Article  Google Scholar 

  • Pesce, C., Crova, C., Cereatti, L., Casella, R., & Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2, 16–22.

    Article  Google Scholar 

  • Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33, 88–109.

    Article  PubMed  Google Scholar 

  • Pohlack, S. T., Meyer, P., Cacciaglia, R., Liebscher, C., Ridder, S., & Flor, H. (2014). Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Structure and Function, 219, 255–267.

    Article  PubMed  Google Scholar 

  • Qin, S., Hermans, E. J., Van Marle, H. J., Luo, J., & Fernández, G. (2009). Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Stress, Traumatization, and Anxiety Disorders, 66, 25–32.

    Google Scholar 

  • Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37, 1645–1666.

    Article  PubMed  Google Scholar 

  • Ruscheweyh, R., Willemer, C., Krüger, K., Duning, T., Warnecke, T., Sommer, J., Völker, K., Ho, H. V., Mooren, F., Knecht, S., & Flöel, A. (2011). Physical activity and memory functions: An interventional study. Neurobiology of Aging, 32, 1304–1319.

    Article  PubMed  Google Scholar 

  • Ryan, N. A., Zwetsloot, K. A., Westerkamp, L. M., Hickner, R. C., Pofahl, W. E., & Gavin, T. P. (2006). Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. Journal of Applied Physiology, 100, 178–185.

    Article  PubMed  Google Scholar 

  • Ryu, K., Kim, J., Ali, A., Choi, S., Kim, H., & Radlo, S. J. (2015). Comparison of athletes with and without burnout using the stroop color and word test. Perceptual and Motor Skills, 121, 413–430.

    Article  PubMed  Google Scholar 

  • Sachinvala, N., Kling, A., Suffin, S., Lake, R., & Cohen, M. (2000). Increased regional cerebral perfusion by 99mTc hexamethyl propylene amine oxime single photon emission computed tomography in post-traumatic stress disorder. Military Medicine, 165, 473–479.

    PubMed  Google Scholar 

  • Schneider, S., Abeln, V., Popova, J., Fomina, E., Jacubowski, A., Meeusen, R., & Struder, H. K. (2013). The influence of exercise on prefrontal cortex activity and cognitive performance during a simulated space flight to Mars (MARS500). Behavioural Brain Research, 236, 1–7.

    Article  PubMed  Google Scholar 

  • Scholz, U., La Marca, R., Nater, U. M., Aberle, I., Ehlert, U., Hornung, R., Martin, M., & Kliegel, M. (2009). Go no-go performance under psychosocial stress: Beneficial effects of implementation intentions. Neurobiology of Learning and Memory, 91, 89–92.

    Article  PubMed  Google Scholar 

  • Schoofs, D., Preuß, D., & Wolf, O. T. (2008). Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology, 33, 643–653.

    Article  PubMed  Google Scholar 

  • Schoofs, D., Wolf, O. T., & Smeets, T. (2009). Cold pressor stress impairs performance on working memory tasks requiring executive functions in healthy young men. Behavioral Neuroscience, 123, 1066. doi:10.1037/a0016980.

    Article  PubMed  Google Scholar 

  • Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T., & Oitzl, M. S. (2012). Stress effects on memory: An update and integration. Neuroscience and Biobehavioral Reviews, 36, 1740–1749.

    Article  PubMed  Google Scholar 

  • Selye, H. (2013). Stress in health and disease. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Sherwood, C. C., Subiaul, F., & Zawidzki, T. W. (2008). A natural history of the human mind: Tracing evolutionary changes in brain and cognition. Journal of Anatomy, 212, 426–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin, L. M., Rauch, S. L., & Pitman, R. K. (2006). Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Annals of the New York Academy of Sciences, 1071, 67–79.

    Article  PubMed  Google Scholar 

  • Shin, L. M., Lasko, N. B., Macklin, M. L., Karpf, R. D., Milad, M. R., Orr, S. P., Goetz, J. M., Fischman, A. J., Rauch, S. L., & Pitman, R. K. (2009). Resting metabolic activity in the cingulate cortex and vulnerability to posttraumatic stress disorder. Archives of General Psychiatry, 66, 1099–1107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha, R. (2008). Chronic stress, drug use, and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105–130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., Browndyke, J. N., & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72, 239–252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139, 81–132.

    Article  PubMed  Google Scholar 

  • Stroth, S., Reinhardt, R. K., Thone, J., Hille, K., Schneider, M., Härtel, S., Weidemann, W., Bös, K., & Spitzer, M. (2010). Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults. Neurobiology of Learning and Memory, 94, 364–372.

    Article  PubMed  Google Scholar 

  • Su, L., Cai, Y., Xu, Y., Dutt, A., Shi, S., & Bramon, E. (2014). Cerebral metabolism in major depressive disorder: A voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry, 14. doi:10.1186/s12888-014-0321-9.

  • Szuhany, K. L., Bugatti, M., & Otto, M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of Psychiatric Research, 60, 56–64.

    Article  PubMed  Google Scholar 

  • Tanida, M., Katsuyama, M., & Sakatani, K. (2007). Relation between mental stress-induced prefrontal cortex activity and skin conditions: A near-infrared spectroscopy study. Brain Research, 1184, 210–216.

    Article  PubMed  Google Scholar 

  • Tata, D. A., Marciano, V. A., & Anderson, B. J. (2006). Synapse loss from chronically elevated glucocorticoids: Relationship to neuropil volume and cell number in hippocampal area CA3. Journal of Comparative Neurology, 498, 363–374.

    Google Scholar 

  • Thomas, A. G., Dennis, A., Bandettini, P. A., & Johansen-Berg, H. (2012). The effects of aerobic activity on brain structure. Frontiers in Psychology, 3. doi:10.3389/fpsyg.2012.00086.

  • Tomporowski, P. D., McCullick, B., Pendleton, D. M., & Pesce, C. (2015). Exercise and children's cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4, 47–55.

    Article  Google Scholar 

  • Tsai, C.-L., Wang, C.-H., Pan, C.-Y., Chen, F.-C., Huang, T.-H., & Chou, F.-Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Frontiers in Behavioral Neuroscience, 8. doi:10.3389/fnbeh.2014.00262.

  • Tsatsoulis, A., & Fountoulakis, S. (2006). The protective role of exercise on stress system dysregulation and comorbidities. Annals of the New York Academy of Sciences, 1083, 196–213.

    Article  PubMed  Google Scholar 

  • Van Luijtelaar, G., Verbraak, M., Van den, B. M., Keijsers, G., & Arns, M. (2010). EEG findings in burnout patients. Journal of Neuropsychiatry and Clinical Neurosciences, 22, 208–217.

    Google Scholar 

  • Van Praag, H. M. (2005). Can stress cause depression? The World Journal of Biological Psychiatry, 6, 5–22.

    Google Scholar 

  • Vasques, P. E., Moraes, H., Silveira, H., Deslandes, A. C., & Laks, J. (2011). Acute exercise improves cognition in the depressed elderly: The effect of dual-tasks. Clinics, 66, 1553–1557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2003). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience, 122, 647–657.

    Article  PubMed  Google Scholar 

  • Vital, T. M., Stein, A. M., De Melo, C. F. G., Arantes, F. J., Teodorov, E., & Santos-Galduroz, R. F. (2014). Physical exercise and vascular endothelial growth factor (VEGF) in elderly: A systematic review. Archives of Gerontology and Geriatrics, 59, 234–239.

    Article  PubMed  Google Scholar 

  • von Dawans, B., & Heinrichs, M. (2017). Physiologische Stressreaktionen. In R. Fuchs & M. Gerber (Hrsg.), Handbuch Stressregulation und Sport. Heidelberg: Springer.

    Google Scholar 

  • Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., Wojcicki, T. R., Mailey, E., McAuley, E., Kramer, A. F., & Erickson, K. I. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Aging, Brain, Behavior, and Immunity, 26, 811–819.

    Article  Google Scholar 

  • Yau, S.-Y., Lau, B., & So, K.-F. (2011). Adult hippocampal neurogenesis: A possible way how physical exercise counteracts stress. Cell Transplantation, 20, 99–111.

    Article  PubMed  Google Scholar 

  • Yu, H., & Chen, Z.-Y. (2011). The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacologica Sinica, 32, 3–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Ludyga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Ludyga, S. (2018). Sportaktivität, Stress und das Gehirn. In: Fuchs, R., Gerber, M. (eds) Handbuch Stressregulation und Sport. Springer Reference Psychologie . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49322-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49322-9_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49321-2

  • Online ISBN: 978-3-662-49322-9

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics