Skip to main content

Teilprojekt TP 5 – Geometrieerfassung

  • Chapter
  • First Online:
Book cover Angewandte Virtuelle Techniken im Produktentstehungsprozess

Zusammenfassung

Kap. 7 fasst die durchgeführten Forschungsarbeiten zur Geometrieerfassung zusammen. Hierzu werden Ansätze zur automatisierten Analyse und Auswertung von Punktewolken aus 3D-Messdaten gezeigt. Basierend auf diesen Daten wurden Algorithmen zur Objekterkennung entwickelt. Diese werden für einen weitgehend automatisierten Abgleich von realen und virtuellen Modellen genutzt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Luhmann, T.: Nahbereichsphotogrammetrie. Wichmann, Heidelberg, 2000.

    Google Scholar 

  2. Chen, F.; Brown, G M.; Song, M.: Overview of the three-dimensional shape measurement using optical methods. Opt. Eng., 39(1):10–22, 2000.

    Google Scholar 

  3. Kern, F: Automatisierte Modellierung von Bauwerksgeometrien aus 3D-Laserscanner-Daten. Dissertation. TU Braunschweig, 2003.

    Google Scholar 

  4. Levoy, M.; Pulli, K.; Curless, B.; Rusinkiewicz, S.; Koller, D.; Pereira, L.; Ginzton, M.; Anderson, S.; Davis, J.; Ginsberg, J.; Shade, J.; Fulk, D.: The Digital Michelangelo Project: 3D Scanning of Large Statues. In: Akeley, Kurt (Hrsg.): Proc. SIGGRAPH 2000, S. 131–144. ACM SIGGRAPH, Addison Wesley, 2000.

    Google Scholar 

  5. Bernardini, F.; Martin, I.; Mittleman, J.; Rushmeier, H.; Taubin, G.: Building a Digital Model of Michelangelo’s Florentine Pietà. IEEE Computer Graphics & Applications, 22(1):59–67, Januar 2002.

    Google Scholar 

  6. Bernardini, F.; Rushmeier, H.: The 3D Model Acquisition Pipeline. Computer Graphics Forum, 21(2):149–172, Juni 2002.

    Google Scholar 

  7. Böhler, W.; Heinz, G.; Marbs, A.; Siebold, M.: 3D Scanning Software: An Introduction. In: Proc. Int. Workshop on Scanning for Cultural Heritage Recording (Corfu, Greece, September 1–2, 2002), S.42–47. Int. Soc. for Photogrammetry and Remote Sensing, 2002.

    Google Scholar 

  8. Cyr, C. M.; Kimia, B. B.: 3D object recognition using shape similarity-based aspect graph. In: Proc. ICCV 2001, S. 254–261, 2001.

    Google Scholar 

  9. Kostiainen, T.; Kalliomaeki, I.; Tamminen, T.; Lampinen, J.: 3D object recognition based on hierarchical eigen shapes and Bayesian inference. In: Casasent, D. P. und E. L. Hall (Hrsg.): Proc. SPIE Intell. Robots and Computer Vision XX: Algorithms, Techn., and Active Vision, Band 4572, S. 165–173, 2001.

    Google Scholar 

  10. Moreno, A. B.; Sanchez, A.; Velez, J.; Diaz, J.: Face Recognition using 3D local geometric features: PCA vs. SVM. In: Proc. 4th Int. Conf. Image and Signal Processing and Analysis (ISPA), 2005.

    Google Scholar 

  11. Dey, T. K.; Giesen, J.; Goswami, S.: Shape Segmentation and matching from noisy point clouds. In: ALEXA, M. und S. RUSINKIEWICZ (Hrsg.): Eurographics Sympos. Point-Based Graphics, S. 193–199, 2004.

    Google Scholar 

  12. Hough, P. V. C.: Method and means for recognizing complex patterns. US Patent Nr. 3069654. 1962.

    Google Scholar 

  13. Ballard, D. H.: Generalizing the Hough transform to detect arbitrary shapes. In: Pattern Recognition 13 (1981), Nr. 2, S. 111–122.

    Google Scholar 

  14. Borgefors, G.: Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm. PAMI (10), Nr. 6, S. 849–865, 1988.

    Google Scholar 

  15. Harris, C.; Stephens, M.: A combined corner and edge detector. Fourth Alvey Vision Conference, Manchester, UK, S. 147–155, 1988.

    Google Scholar 

  16. Schmid, C.; Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(5), S. 31–50, 1997.

    Google Scholar 

  17. Loewe, D.G.: Object recognition from local scale invariant features. International Conference on Computer Vision, Corfu, GR, 1999.

    Google Scholar 

  18. Wuest, H.; Vial, F.; Stricker, D. Adaptive Line Tracking with Multiple Hypotheses for Augmented Reality. Proceedings of the Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality, S. 62–69, 2005.

    Google Scholar 

  19. Dey, T. K.; Giesen, J.; Hudson, J.: Delaunay based shape reconstruction from large data. In: Proc. IEEE Symp. Parallel and Large Data Visualization and Graphics (PVG 2001), S. 19–27, 2001.

    Google Scholar 

  20. Hoppe, H.: Surface Reconstruction from Unorganized Points. Dissertation, University of Washington, 1994.

    Google Scholar 

  21. Amenta, N., Choi, S.; Kolluri, R K.: The power crust, unions of balls, and the medial axis transform. Comput. Geom., Theory and Applications, 19:201–210, 2001.

    Google Scholar 

  22. Dey, T. K.: Sample based geometry modeling. In: Chapter in Geometric and Algorithmic Aspects of Computer-Aided Design and Manufacturing, Band 67 der Reihe Discrete Mathematics and Theoretical Computer Science, 2005.

    Google Scholar 

  23. Kobbelt, L. P.; Botsch, M.; Schwanecke, U.; Seidel, H.-P.: Feature sensitive surface extraction from volume data. In: ACM SIGGRAPH 01, S. 57–66, 2001.

    Google Scholar 

  24. JU, T.; Losasso, F.; Schaefer, S.; Warren, J.: Dual Contouring of Hermite Data. ACM Trans. Graphics (SIGGRAPH 02), 21(3):339–346, 2002.

    Google Scholar 

  25. Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G.: The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4):349–359, 1999.

    Google Scholar 

  26. Eck, M.; Hoppe, H.: Automatic Reconstruction of B-Spline Surfaces of Arbitrary Topological Type. Computer Graphics, 30:325–334, 1996.

    Google Scholar 

  27. Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C. T.: Point Set Surfaces. IEEE Visualization 2001, S. 1–28, 2001.

    Google Scholar 

  28. Oliva, A., A. Torralba: The role of context in object recognition. Trends in Cognitive Sciences, vol. 11(12), S. 520–527, 2007.

    Google Scholar 

  29. Trostmann, E.; Teutsch, C.; Berndt, D.: Adaptive pre-processing of large point clouds from optical 3D scanners. In Proc. IADIS Int. Conf. Applied Computing (Oct. 14–16, 2010, Timisoara, Romania), pages 43–52.

    Google Scholar 

  30. David, A.; Ponce, Jean: „Computer Vision: A Modern Approach“, Prentice Hall Professional Technical Reference, 2002.

    Google Scholar 

  31. Z. Zhang: „A flexible new technique for camera calibration“, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

    Google Scholar 

  32. Kraus, Karl: „Photogrammetrie, Band 2: Verfeinerte Methoden und Anwendungen“, 3. Auflage, Dümmler/Bonn 1996.

    Google Scholar 

  33. Owens, J. D.; Luebke, David; Govindaraju, Naga; Harris, Marc; Krüger, Jens; Lefohn, Aaron E.; Purcell, Timothy J.: „A Survey of General-Purpose Computation on Graphics Hardware.“ In Eurographics 2005, State of the Art Reports, 2005.

    Google Scholar 

  34. Saito, Takafumi; Takahashi, Tokiichiro: „Comprehensible rendering of 3D shapes.“ In: SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques. New York, NY, USA: ACM Press, 1990.

    Google Scholar 

  35. Canny, John: „A computational approach to edge detection.“ In: IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 1986.

    Google Scholar 

  36. Pharr, M; Fernando, R.: „Gpu Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation“ Addison-Wesley Professional, 2005.

    Google Scholar 

  37. Gavrila, D.M.:„Multi-Feature Hierarchical Template Matching Using Distance Transforms“. In Proceedings of the 14th International Conference on Pattern Recognition-Volume 1, ICPR 1998.

    Google Scholar 

  38. Hartley, R.I.; Zisserman, A.: „Multiple View Geometry in Computer Vision“ CambridgeUniversity Press, second edn. (2004).

    Google Scholar 

  39. Ruigang Yang Marc, Marc Pollefeys, Sifang Li: „Improved Real-Time Stereo on Commodity Graphics Hardware“ In IEEE Workshop on Real-time 3D Sensors and Their Use (in conjunction with CVPR’04), 2004.

    Google Scholar 

  40. Teutsch, C.; Berndt, D.; Sobotta, A.; Sperling, S.: „A flexible photogrammetric stereo vision system for capturing the 3D shape of extruded profiles.“ In P. S. Huang, editor, Proc. Two- and Three-Dimensional Methods for Inspection and Metrology IV (Optics East 2006, USA), volume 6382. SPIE, 2006.

    Google Scholar 

  41. Sauer, S.: “Optical Metrology and Visualization – for Design, Manufacturing, Quality Assurance.” Workshop “Industrielle Bildverarbeitung und Virtuelle Realität”, GosNIIAS, Moskau, 2008.

    Google Scholar 

  42. Schenk, M.; Grubert, J.; Sauer, S.; Berndt, D.; Mecke, R.: “Augmented Reality basierte Werkerassistenz.” In: Schenk, M. (Hrsg.): HABTagung. (Magdeburg 9.-10. Oktober 2009).

    Google Scholar 

  43. Sauer, S.: “Bildbasiertes Assistenz- und Prüfsystem für manuelle, komplexe Montagetätigkeiten.” In: Fraunhofer Vision Technologietag 2009. (Kaiserslautern 9. Oktober 2009).

    Google Scholar 

  44. Sauer, Steffen; Berndt, Dirk; Niemann, Jörg; Böker, Jörg: “Worker Assistance and Quality Inspection for Manual Mounting Tasks – A Virtual Technology for Manufacture”. In: Lohweg, Volker; Mertsching, Bärbel (Hg.): Bildverarbeitung in der Automation. 1. Jahreskolloquium. BVAu 2010. Lemgo: Institut Industrial IT, 2010.

    Google Scholar 

  45. Bass, L., P. Clements und R. Kazman: Software Architecture in Practice. Amsterdam: Addison-Wesley Longman 2. Aufl., 2003.

    Google Scholar 

  46. Nick, M., K.-D. Althoff und R. Bergmann: Experience Management. In: Künstliche Intelligenz, Ausgabe 2, 2007.

    Google Scholar 

  47. Nick, M.: Experience Maintenance through Closed-Loop Feedback. (PhD thesis, University of Kaiserslautern). Stuttgart: Fraunhofer IRB, 2005.

    Google Scholar 

  48. Oliva, A., A. Torralba: The role of context in object recognition. Trends in Cognitive Sciences, vol. 11(12), S. 520–527, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Teutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Teutsch, C., Sauer, S., Berndt, D., Wessner, M., Schneickert, S. (2016). Teilprojekt TP 5 – Geometrieerfassung. In: Schenk, M., Schumann, M. (eds) Angewandte Virtuelle Techniken im Produktentstehungsprozess. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49317-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49317-5_7

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49316-8

  • Online ISBN: 978-3-662-49317-5

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics