Skip to main content

Störungen der Neurobiochemie und Signaltransduktion als Grundlage psychischer Erkrankungen

  • Chapter
  • First Online:
Psychiatrie, Psychosomatik, Psychotherapie

Part of the book series: Springer Reference Medizin ((SRM))

  • 35k Accesses

Zusammenfassung

Die Rolle von Neurotransmittersystemen in der Physiologie der Gehirnfunktionen ist ebenso unbestritten wie deren Beteiligung an pathologischen Veränderungen, die letztlich zu den Symptomen psychischer Krankheiten führen. Neurotransmitterhypothesen psychischer Störungen sind sowohl in der Pathogeneseforschung als auch in der Psychopharmakotherapie Ausgangspunkte der wissenschaftlichen Bemühungen um ein besseres Verständnis der neurobiochemischen Grundlagen psychischer Erkrankungen. Einfache Monotransmitterhypothesen haben adäquateren Gleichgewichtstheorien weichen müssen, die von einer komplizierten Interaktion der verschiedensten Neurotransmitter ausgehen, neuroanatomische Strukturierungen („funktionelle Systeme“) berücksichtigen und auch Effekte in die Überlegungen miteinbeziehen, die über die reine Synapsenwirkung hinausgehen (Signaltransduktoren, Transkriptionsfaktoren etc.). Die Neurotransmittersysteme des Gehirns sind so komplex, dass bislang nur die Grundzüge ihrer Funktionsweisen bekannt sind. Es wäre vermessen anzunehmen, dass aus der Kenntnis dieser Prozesse ein Verständnis der menschlichen Psyche erwachsen könnte. Die Tatsache, dass Störungen der Neurotransmittersysteme eine Grundlage psychischer Erkrankungen darstellen können, darf nicht dazu führen, hierin die alleinige Ursache psychischer Störungen zu erblicken. Ein solcher einseitiger reduktionistischer und simplifizierender Biologismus wird weder im wissenschaftlichen Sinn dem komplexen System der menschlichen Psyche noch im ärztlichen Sinn den Bedürfnissen psychisch kranker Patienten gerecht. Erst in der interdisziplinären Verbindung mit neuroanatomischen, neuropsychologischen und klassisch-klinischen, psychopathologischen Bemühungen können neurobiochemische Hypothesen wie die Neurotransmittertheorien dazu beitragen, psychische Störungen besser zu verstehen und optimierte therapeutische Strategien zu entwickeln.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Abi-Dargham A (2014) Schizophrenia: overview and dopamine dysfunction. Clin Psychiatry 75, e31

    Article  Google Scholar 

  • Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF (2015) Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res 226:1–13

    Article  PubMed  Google Scholar 

  • Akin D, Hal Manier D, Sanders-Bush E, Shelton RC (2005) Signal transduction abnormalities in melancholic depression. Int J Neuropsychopharmacol 8:5–16

    Article  CAS  PubMed  Google Scholar 

  • Barker PA (2009) Whither proBDNF? Nat Neurosci 12(2):105–106

    Article  CAS  PubMed  Google Scholar 

  • Belelli D, Herd MB, Mitchell EA et al (2006) Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance. Neuroscience 138(3):821–829

    Article  CAS  PubMed  Google Scholar 

  • Benkert O, Hippius H (1996) Psychiatrische Pharmakotherapie. Springer, Berlin/Heidelberg/New York/Tokio

    Google Scholar 

  • Birkmayer W, Riederer P (1986) Neurotransmitter und menschliches Verhalten. Springer, Berlin/Heidelberg/New York/Tokio

    Book  Google Scholar 

  • Birkmayer W, Danielczyk W, Neumayer E, Riederer P (1972) The balance of biogenic amines as condition for normal behaviour. J Neural Transm 33:163–178

    Article  CAS  PubMed  Google Scholar 

  • Bleich S, Bleich K, Wiltfang J et al (2001) Glutamaterge Neurotransmission bei Schizophrenien. Fortschr Neurol Psychiatr 69(Suppl 2):556–561

    Google Scholar 

  • Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59(12):1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Brain Res Rev 21:285–300

    Article  CAS  PubMed  Google Scholar 

  • Bodner KE, Beversdorf DQ, Saklayen SS, Christ SE (2012) Noradrenergic moderation of working memory impairments in adults with autism spectrum disorder. J Int Neurospychol Soc 18:556–564

    Article  Google Scholar 

  • Boks MP, Rietkerk T, van de Beek MH et al (2007) Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. Eur Neuropsychopharmacol 17(9):567–572

    Article  CAS  PubMed  Google Scholar 

  • Bradley AJ, Lenox-Smith AJ (2013) Does adding noradrenaline reuptake inhibition to selective serotonin reuptake inhibition improve efficacy in patients with depression? A systematic review of meta-analyses and large randomised pragmatic trials. J Psychopharmacol 27:740–758

    Article  PubMed  Google Scholar 

  • Brem S, Grünblatt E, Drechsler R, Riederer P, Walitza S (2014) The neurobiological link between OCD and ADHD. Atten Defic Hyperact Disord 6(3):175–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryn V, Halvorsen B, Ueland T, Isaksen J, Kolkova K, Ravn K, Skjeldal OH (2015) Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur J Paediatr Neurol 19:411–414

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Arroyo I, López-Griego L, Morales-Montor J (2009) The role of cytokines in the regulation of neurotransmission. Neuroimmunomodulation 16(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A (1995) Neurocircuitries and neurotransmitter interactions in schizophrenia. Int Clin Psychopharmacol 10(Suppl 3):21–28

    PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S et al (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Ann Rev Pharmacol Toxicol 41:237–260

    Article  CAS  Google Scholar 

  • Cartier E, Hamilton PJ, Belovich AN, Shekar A, Campbell NG, Saunders C, Andreassen TF, Gether U, Veenstra-Vanderweele J, Sutcliffe JS, Ulery-Reynolds PG, Erreger K, Matthies HJ, Galli A (2015) Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine 2:135–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Cattaneo A, Bocchio-Chiavetto L, Zanardini R et al (2010) Reduced peripheral brain-derived neurotrophic factor mRNA levels are normalized by antidepressant treatment. Int J Neuropsychopharmacol 13:103–108

    Article  CAS  PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  PubMed  Google Scholar 

  • Cloninger CR, Svrakic DM, Przybeck TR (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50:975–990

    Article  CAS  PubMed  Google Scholar 

  • Coppen AJ (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Cowen PJ (2008) Serotonin and depression: pathophysiological mechanism or marketing myth? Trends Pharmacol Sci 29(9):433–436

    Article  CAS  PubMed  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  CAS  PubMed  Google Scholar 

  • Domschke K, Lawford B, Laje G et al (2010) Brain-derived neurotrophic factor (BDNF) gene: no major impact on antidepressant treatment response. Int J Neurophsychopharmacol 13:93–101

    Article  CAS  Google Scholar 

  • Dooley DJ, Taylor CP, Donevan S et al (2007) Ca2+ channel alpha2delta ligands: novel modulators of neurotransmission. Trends Pharmacol Sci 28(2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46:1181–1191

    Article  CAS  PubMed  Google Scholar 

  • Eisen R, Perera S, Bawor M, Banfield L, Anglin R, Minuzzi L, Samaan Z (2015) Association between BDNF levels and suicidal behaviour: a systematic review protocol. Syst Rev 4:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkbeiner S, Tavazoie SF et al (1997) CREB: a major mediator of neuronal neurotrophin responses. Neuron 19(5):1031–1047

    Article  CAS  PubMed  Google Scholar 

  • Fritze J, Deckert J, Lanczik M et al (1992) Stand der Amin-Hypothese depressiver Erkrankungen. Nervenarzt 63:3–13

    CAS  PubMed  Google Scholar 

  • Gabriele S, Sacco R, Persico AM (2014) Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 24:919–929

    Article  CAS  PubMed  Google Scholar 

  • Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, D'arcy M, O'Hara RJ, Goldmuntz E, Grice DE, Shaikh TH, Hakonarson H, Buxbaum JD, Elia J, White PS (2012) Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry 17:402–411

    Article  CAS  PubMed  Google Scholar 

  • Gass P, Hellweg R (2010) Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker for affective disorders? Int J Neuropsychopharmacol 13:1–4

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Reichmann H, Riederer P (2007) Die Parkinsonkrankheit, 4. Aufl. Springer, Wien/New York

    Google Scholar 

  • Gerlach M, Warnke A, Wewetzer C (2014) Neuro-Psychopharmaka im Kindes- und Jugendalter: Grundlagen und Therapie. Springer, Wien/New York

    Google Scholar 

  • Grosjean B, Tsai GE (2007) NMDA neurotransmission as a critical mediator of borderline personality disorder. J Psychiatry Neurosci 32(2):103–115

    PubMed  PubMed Central  Google Scholar 

  • Grünblatt E, Bartl J, Marinova Z, Walitza S (2013) In vitro study methodologies to investigate genetic aspects and effects of drugs used in attention-deficit hyperactivity disorder. J Neural Transm 120(1):131–139. doi:10.1007/s00702-012-0869-9. Epub 26 July 2012

    Article  PubMed  Google Scholar 

  • Gurvits IG, Koenigsberg HW, Siever LJ (2000) Neurotransmitter dysfunction in patients with borderline personality disorder. Psychiatr Clin North Am 23:27–40

    Article  CAS  PubMed  Google Scholar 

  • Hattori M, Kunugi H, Akahane A et al (2002) Novel polymorphisms in the promoter region of the neurotrophin-3 gene and their associations with schizophrenia. Am J Med Genet 114:304–309

    Article  PubMed  Google Scholar 

  • Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, Lesch KP (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66(6):2621–2624

    Article  CAS  PubMed  Google Scholar 

  • Heresco-Levy U (2005) Glutamatergic neurotransmission modulators as emerging new drugs for schizophrenia. Expert Opin Emerg Drugs 10(4):827–844

    Article  CAS  PubMed  Google Scholar 

  • Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29:97–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao JK, Colison J, Bartko JJ et al (1993) Monoamine neurotransmitter interactions in drug-free and neuroleptic-treated schizophrenics. Arch Gen Psychiatry 50:606–614

    Article  CAS  PubMed  Google Scholar 

  • Hu W, MacDonald ML, Elswick DE, Sweet RA (2015) The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 1338:38–57

    Article  CAS  PubMed  Google Scholar 

  • Hui C, Wardwell B, Tsai GE (2009) Novel therapies for schizophrenia: understanding the glutamatergic synapse and potential targets for altering N-methyl-D-aspartate neurotransmission. Recent Pat CNS Drug Discov 4(3):220–238

    Article  CAS  PubMed  Google Scholar 

  • Hyman SE, Nestler EJ (1993) The molecular foundations of psychiatry. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Joyce PR, Stephenson J, Kennedy M, Mulder RT, McHugh PC (2014) The presence of both serotonin 1A receptor (HTR1A) and dopamine transporter (DAT1) gene variants increase the risk of borderline personality disorder. Front Genet 4:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Kew JNC, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179:4–29

    Article  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Beckmann H, Riederer P (1990) Das dopaminerg-glutamaterge Gleichgewicht unter dem Aspekt von schizophrener Plus- und Minussymptomatik. In: Möller HJ, Pelzer E (Hrsg) Neuere Ansätze zur Diagnostik und Therapie schizophrener Minussymptomatik. Springer, Berlin/Heidelberg/New York/Tokio, S 119–126

    Chapter  Google Scholar 

  • Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P (1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 206(4):297–300

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC (2005) Neurotransmission: emerging roles of endocannabinoids. Curr Biol 15(14):R549–R551

    Article  CAS  PubMed  Google Scholar 

  • Kriegebaum C, Gutknecht L, Schmitt A et al (2010) Serotonin Kompakt – Teil1: Neurobiologische und entwicklungsgenetische Grundlagen. Fortschr Neurol Psychiat 78(6):319–331

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH (2008) Capitalizing on extrasynaptic glutamate neurotransmission to treat antipsychotic-resistant symptoms in schizophrenia. Biol Psychiatry 64(5):358–360

    Article  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Morris HM (2008) Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. Neurotox Res 14(2–3):237–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Logrip ML, Barak S, Warnault V, Ron D (2015) Corticostriatal BDNF and alcohol addiction. Brain Res (in press)

    Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    Article  CAS  PubMed  Google Scholar 

  • Milovanovic M, Eriksson K, Winblad B, Nilsson S, Lindahl TL, Post C, Järemo P (2014) Alzheimer and platelets: low-density platelet populations reveal increased serotonin content in Alzheimer type dementia. Clin Biochem 47:51–53

    Article  CAS  PubMed  Google Scholar 

  • Molendijk ML, Spinhoven P, Polak M, Bus BA, Penninx BW, Elzinga BM (2014) Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol Psychiatry 19(7):791–800

    Article  CAS  PubMed  Google Scholar 

  • Müller WE (2015) Antidepressiva und kognitive Dysfunktion: die Rolle von Vortioxetin. Psychopharmakotherapie 22:177–188

    Google Scholar 

  • Müller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10(2):131–148

    Article  PubMed  Google Scholar 

  • Nagappan G, Zaitsev E et al (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc Natl Acad Sci U S A 106(4):1267–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M, Roth A, Kyzar EJ, Poudel MK, Wong K, Stewart AM, Kalueff AV (2014) Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochem Int 66:15–26

    Article  CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin/Heidelberg/New York/Tokio

    Book  Google Scholar 

  • Norra C, Mrazek M, Tuchtenhagen F, Gobbelé R, Buchner H, Sass H, Herpertz SC (2003) Enhanced intensity dependence as a marker of low serotonergic neurotransmission in borderline personality disorder. J Psychiatr Res 37:23–33

    Article  PubMed  Google Scholar 

  • Notaras M, Hill R, van den Buuse M (2015) A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev 51:15–30

    Article  CAS  PubMed  Google Scholar 

  • Nuss P (2015) Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11:165–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obeso JA, Grandas F, Herrero MT, Horowski R (1994) The role of pulsatile versus continuous dopamine receptor stimulation for functional recovery in Parkinson’s disease. Eur J Neurosci 6:889–897

    Article  CAS  PubMed  Google Scholar 

  • Ohira K, Takeuchi R, Iwanaga T, Miyakawa T (2013) Chronic fluoxetine treatment reduces parvalbumin expression and perineuronal nets in gamma-aminobutyric acidergic interneurons of the frontal cortex in adult mice. Mol Brain 6:43. doi:10.1186/1756-6606-6-43

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons CG, Danysz W, Zieglgänsberger W (2005) Excitatory amino acid neurotransmission. Handb Exp Pharmacol 169:249–303

    Article  CAS  Google Scholar 

  • Pehrson AL, Sanchez C (2014) Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS Spectr 19:121–133

    Article  PubMed  Google Scholar 

  • Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML (2015) BDNF as a biomarker for successful treatment of mood disorders: a systematic and quantitative meta-analysis. J Affect Disord 174:432–440

    Article  CAS  PubMed  Google Scholar 

  • Rapp S, Thome J (2004) Synaptische Vesikelproteine und psychiatrische Erkrankungen. Nervenarzt 75:628–632

    Article  CAS  PubMed  Google Scholar 

  • Reif A, Lesch KP (2003) Toward a molecular architecture of personality. Behav Brain Res 139:1–20

    Article  CAS  PubMed  Google Scholar 

  • Reinikainen KJ, Soininen H, Riekkinen PJ (1990) Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res 27:576–586

    Article  CAS  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    Article  CAS  PubMed  Google Scholar 

  • Sherman AD, Davidson AT, Baruah S et al (1991) Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett 121:77–80

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 70:165–188

    Article  CAS  PubMed  Google Scholar 

  • Soloff PH, Chiappetta L, Mason NS, Becker C, Price JC (2014) Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Res 222:140–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl SM (2015a) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine. CNS Spectr 30:1–5

    Article  Google Scholar 

  • Stahl SM (2015b) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): actions at serotonin receptors may enhance downstream release of four pro-cognitive neurotransmitters. CNS Spectr 11:1–5

    Article  Google Scholar 

  • Stahl SM (2015c) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release. CNS Spectr 20(4):331–336

    Article  PubMed  Google Scholar 

  • Suhara I, Okuba Y, Yasawa F et al (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30

    Article  CAS  PubMed  Google Scholar 

  • Thome J (2005) Molekulare Psychiatrie. Theoretische Grundlagen, Forschung und Klinik. Huber, Bern

    Google Scholar 

  • Thome J, Eisch AJ (2005) Neuroneogenese. Relevanz für Pathophysiologie und Pharmakotherapie psychiatrischer Ekrankungen. Nervenarzt 76:11–19

    Article  CAS  PubMed  Google Scholar 

  • Thome J, Riederer P (1995) Neurobiologie der Aggressivität. In: Nissen G (Hrsg) Aggressivität und Gewalt. Prävention und Therapie. Huber, Bern/Göttingen/Toronto/Seattle, S 29–38

    Google Scholar 

  • Thome J, Foley P, Riederer P (1998) Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. J Neural Transm 105:85–100

    Article  CAS  PubMed  Google Scholar 

  • Thome J, Sakai N, Shin KH et al (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 20:4030–4036

    CAS  PubMed  Google Scholar 

  • Thome J, Duman RS, Henn FA (2002) Molekulare Aspekte antidepressiver Therapie: Transsynaptische Effekte auf Signaltransduktion, Genexpression und neuronale Plastizität. Nervenarzt 73:595–599

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Passani LA, Slusher BS et al (1995) Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 52:829–836

    Article  CAS  PubMed  Google Scholar 

  • Wang SJ, Yang TT (2005) Role of central glutamatergic neurotransmission in the pathogenesis of psychiatric and behavioral disorders. Drug News Perspect 18(9):561–566

    Article  CAS  PubMed  Google Scholar 

  • Wolff S, Tucker K (2008) Die Rolle der Histon-Acetylierung für Lernen und Gedächtnis. Neuroforum 4:274–278

    Google Scholar 

  • Yu L, Chibnik LB, Srivastava GP, Pochet N, Yang J, Xu J, Kozubek J, Obholzer N, Leurgans SE, Schneider JA, Meissner A, De Jager PL, Bennett DA (2015) Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease. JAMA Neurol 72:15–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Rehkämper G (1994) Funktionelle Neuroanatomie, 2. Aufl. Springer, Berlin/Heidelberg/New York/Tokio

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Riederer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riederer, P., Müller, W.E., Eckert, A., Thome, J. (2017). Störungen der Neurobiochemie und Signaltransduktion als Grundlage psychischer Erkrankungen. In: Möller, HJ., Laux, G., Kapfhammer, HP. (eds) Psychiatrie, Psychosomatik, Psychotherapie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49295-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49295-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49293-2

  • Online ISBN: 978-3-662-49295-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics