Advertisement

Channel Estimation in Massive MIMO: Algorithm and Hardware

  • Chuan TangEmail author
  • Cang Liu
  • Luechao Yuan
  • Zuocheng Xing
Conference paper
  • 664 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 592)

Abstract

Currently 5G is research hotspot in communication field, and one of the most promising wireless transmission technologies for 5G is massive multiple input multiple output (MIMO) which provides high data rate and energy efficiency. The main challenge of massive MIMO is the channel estimation due to the complexity and pilot contamination. Some improvement of traditional channel estimation methods to solve the problem in massive MIMO have been introduced in this paper. Besides, the hardware acceleration is useful for massive MIMO channel estimation algorithm. We discuss the relate work about hardware accelerator of matrix inversion and singular value decomposition which are the main complex operations of channel estimation. We find that the memory system, network of processing elements and the precision will be the main research directions for the hardware design of large-scale data size.

Keywords

Massive MIMO Channel estimation Hardware accelerator FPGA 

Notes

Acknowledgments

This work was supported in part by the NSF of China (Grant No. 61170083, 61373032) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20114307110001).

References

  1. 1.
    Wang, C.X., Haider, F., Gao, X., You, X.H., Yang, Y., Yuan, D., Aggoune, H., Haas, H., Fletcher, S., Hepsaydir, E.: Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRefGoogle Scholar
  2. 2.
    Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P.M., Haas, H., Thompson, J.S., Ku, I., Wang, C.X.: Green radio: radio techniques to enable energy-efficient wireless networks. IEEE Commun. Mag. 49(6), 46–54 (2011)CrossRefGoogle Scholar
  3. 3.
    Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun. 9(11), 3590–3600 (2010)CrossRefGoogle Scholar
  4. 4.
    Rusek, F., Persson, D., Lau, B.K., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F., Print, P., Rusek, F., Persson, D.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Sig. Process. Mag. 30(1), 40–60 (2013)CrossRefGoogle Scholar
  5. 5.
    Marzetta, T.L., Caire, G., Debbah, M., Chih-Lin, I., Mohammed, S.K.: Special issue on massive MIMO. J. Commun. Netw. 15(4), 333–337 (2013)CrossRefGoogle Scholar
  6. 6.
    Shin, C., Heath Jr., R.W., Powers, E.J.: Blind channel estimation for MIMO-OFDM systems. IEEE Trans. Veh. Technol. 2, 670–685 (2007)CrossRefGoogle Scholar
  7. 7.
    Tu, C.C., Champagne, B.: Subspace blind MIMO-OFDM channel estimation with short averaging periods: performance analysis. In: Wireless Communications and Networking Conference, WCNC 2008, pp. 24–29. IEEE (2008)Google Scholar
  8. 8.
    Shariati, N., Bjornson, E., Bengtsson, M., Debbah, M.: Low-complexity channel estimation in large-scale MIMO using polynomial expansion, ePrint arXiv, pp. 1157–1162 (2013)Google Scholar
  9. 9.
    Shepard, C., Yu, H., Zhong, L.: Argosv2: a flexible many-antenna research platform, pp. 163–166. (2013). http://nms.csail.mit.edu
  10. 10.
    Cands, E.J.: Compressive sampling. Marta Sanz Sol 25(2), 1433–1452 (2007)Google Scholar
  11. 11.
    Renzo, M.D., Haas, H., Ghrayeb, A., Member, S., Sugiura, S., Member, S., Hanzo, L.: Spatial modulation for generalized MIMO: challenges, opportunities and implementation. Proc. IEEE 102(1), 56–103 (2013)CrossRefGoogle Scholar
  12. 12.
    Lei, Z.D., Lim, T.J.: Simplified polynomial-expansion linear detectors for DS-CDMA systems. Electron. Lett. 34(16), 1561–1563 (1998)CrossRefGoogle Scholar
  13. 13.
    Hoydis, J., Debbah, M., Kobayashi, M.: Asymptotic moments for interference mitigation in correlated fading channels. In: 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2796–2800 (2011)Google Scholar
  14. 14.
    Kammoun, A., Muller, A., Bjornson, E., Debbah, M.: Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems. IEEE J. Sel. Top. Sig. Process. 8(5), 861–875 (2014)CrossRefGoogle Scholar
  15. 15.
    Chen, Z., Hou, X., Han, S., Yang, C., Wang, G., Lei, M.: Low complexity channel estimation in TDD coordinated multi-point transmission systems. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 3128–3133 (2013)Google Scholar
  16. 16.
    Yin, H., Fellow, D.G., Liu, Y.: A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun. 31(2), 264–273 (2012)CrossRefGoogle Scholar
  17. 17.
    Rao, X., Lau, V.K.N.: Distributed compressive csit estimation and feedback for fdd multi-user massive MIMO systems. IEEE Trans. Sig. Process. 62(12), 3261–3271 (2014)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Tse, D., Viswanath, P.: Fundamentals of wireless communication. Eth Zrich Lect. Script 3(5), B6–1–B6–5 (2005)Google Scholar
  19. 19.
    Nguyen, S.L.H., Ghrayeb, A.: Compressive sensing-based channel estimation for massive multiuser MIMO systems. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2890–2895 (2013)Google Scholar
  20. 20.
    Mller, R., Cottatellucci, L., Vehkapera, M.: Blind pilot decontamination. IEEE J. Sel. Top. Sig. Process. 8(5), 1016–1020 (2013)Google Scholar
  21. 21.
    Ngo, B.Q., Larsson, E.G.: EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3249–3252 (2012)Google Scholar
  22. 22.
    Wu, X., Renzo, M.D., Haas, H., Wu, X.: Channel estimation for spatial modulation. IEEE Trans. Commun. 62(12), 4362–4372 (2013)CrossRefGoogle Scholar
  23. 23.
    Chen, S., Sugiura, S., Hanzo, L.: Semi-blind joint channel estimation and data detection for space-time shift keying systems. IEEE Sig. Process. Lett. 17(12), 993–996 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhang, P., Dey, I., Sugiura, S., Chen, S.: Semi-blind adaptive space-time shift keying systems based on iterative channel estimation and data detection. IEEE Veh. Technol. Conf. 120(2226), 1–5 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhang, P., Chen, S., Hanzo, L.: Reduced-complexity near-capacity joint channel estimation and three-stage turbo detection for coherent space-time shift keying. IEEE Trans. Commun. 61(5), 1902–1913 (2013)CrossRefGoogle Scholar
  26. 26.
    Yokoyama, S., Matsumoto, K. Sedukhin, S.G.: Matrix inversion on thecell/b.e. processor. In: 11th IEEE International Conference on High Performance Computing and Communications, HPCC 2009, pp. 148–153 (2009)Google Scholar
  27. 27.
    Huang, Z.Y., Tsai, P.Y.: Efficient implementation of qr decomposition for gigabit MIMO-OFDM systems. IEEE Trans. Circ. Syst. I Regul. Pap. 58(10), 2531–2542 (2011)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Singh, C.K., Prasad, S.H., Balsara, P.T.: VLSI architecture for matrix inversion using modified Gram-Schmidt based QR decomposition. In: Proceedings of the IEEE International Conference on VLSI Design, pp. 836–841 (2007)Google Scholar
  29. 29.
    Eilert, J., Wu, D., Liu, D.: Efficient complex matrix inversion for MIMO software defined radio. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 2610–2613 (2007)Google Scholar
  30. 30.
    Ma, L., Dickson, K., Mcallister, J., Mccanny, J.: QR decomposition based matrix inversion for high performance embedded MIMO receivers. IEEE Trans. Sig. Process. 59(4), 1858–1867 (2011)CrossRefGoogle Scholar
  31. 31.
    Zhang, L., Li, F., Shi, G.: Efficient matrix inversion based on VLIW architecture. J. Syst. Eng. Electron. 25(3), 393–398 (2014)CrossRefGoogle Scholar
  32. 32.
    Arias-Garcia, J., Jacobi, R.P., Llanos, C.H., Ayala-Rincon, M.: A suitable FPGA implementation of floating-point matrix inversion based on Gauss-Jordan elimination. In: 2011 VII Southern Conference on Programmable Logic (SPL), pp. 263–268 (2011)Google Scholar
  33. 33.
    Moussa, S., Razik, A.M.A., Dahmane, A.O., Hamam, H.: FPGA implementation of floating-point complex matrix inversion based on Gauss-Jordan elimination. In: Canadian Conference on Electrical & Computer Engineering, pp. 1–4 (2013)Google Scholar
  34. 34.
    Arias-Garcia, J., Llanos, C.H., Ayala-Rincon, M., Jacobi, R.P. : FPGA implementation of large-scale matrix inversion using single, double and custom floating-point precision. In: 2012 VIII Southern Conference on Programmable Logic (SPL), pp. 1–6 (2012)Google Scholar
  35. 35.
    Zhou, J., Dou, Y., Zhao, J., Xia, F., Lei, Y., Tang, Y.: A fine-grained pipelined implementation for large-scale matrix inversion on FPGA. In: Dou, Y., Gruber, R., Joller, J.M. (eds.) APPT 2009. LNCS, vol. 5737, pp. 110–122. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Wu, M., Yin, B., Vosoughi, A., Studer, C., Cavallaro, J.R., Dick, C.: Approximate matrix inversion for high-throughput data detection in the large-scale MIMO uplink. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2155–2158 (2013)Google Scholar
  37. 37.
    Yin, B., Wu, M., Studer, C., Cavallaro, J.R., Dick, C.: Implementation trade-offs for linear detection in large-scale MIMO systems. In: 1988 International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1988, vol. 32, no. 3, pp. 2679–2683 (2013)Google Scholar
  38. 38.
    Ylinen, M., Burian, A., Takala, J.: Direct versus iterative methods for fixed-point implementation of matrix inversion. In: Proceedings of the 2004 International Symposium on Circuits and Systems, ISCAS 2004, vol. 3, pp. III–225–8 (2004)Google Scholar
  39. 39.
    Kaji, T., Yoshizawa, S., Miyanaga, Y.: Development of an ASIP-based singular value decomposition processor in SVD-MIMO systems. In: 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 1–5 (2011)Google Scholar
  40. 40.
    Bildosola, I., Martinez-Corral, U., Basterretxea, K.: Adaptive scalable SVD unit for fast processing of large LSE problems. In: 2014 IEEE 25th International Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 17–24 (2014)Google Scholar
  41. 41.
    Brent, R.P., Luk, F.T., Van Loan, C.: Computation of the singular value decomposition using mesh-connected processors. J. VLSI Comput. Syst. 1(3), 242–270 (1983)Google Scholar
  42. 42.
    Cavallaro, J.R., Luk, F.T.: Architectures for a CORDIC SVD processor. In: 30th Annual Technical Symposium, pp. 45–53 (1986)Google Scholar
  43. 43.
    Sibul, L.H., Fogelsanger, A.L.: Application of coordinate rotation algorithm to singular value decomposition. In: IEEE International Symposium on Circuits and Systems, pp. 821–824 (1984)Google Scholar
  44. 44.
    Bobda, C., Danne, K., Linarth, A.: Efficient implementation of the singular value decomposition on a reconfigurable system. In: Cheung, P.Y.K., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  45. 45.
    Ledesma-Carrillo, L.M., Cabal-Yepez, E., Romero-Troncoso, R.D.J., Garcia-Perez, A., Osornio-Rios, R.A. Carozzi, T.D.: Reconfigurable FPGA-based unit for singular value decomposition of large m\(\,\times \,\)n matrices. In: International Conference on Reconfigurable Computing and FPGAs, pp. 345–350 (2011)Google Scholar
  46. 46.
    Milford, D., Sandell, M.: Singular value decomposition using an array of CORDIC processors. Sig. Process. 102(9), 163–170 (2014)CrossRefGoogle Scholar
  47. 47.
    Martinez-Corral, U., Basterretxea, K., Finker, R.: Scalable parallel architecture for singular value decomposition of large matrices. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chuan Tang
    • 1
    Email author
  • Cang Liu
    • 1
  • Luechao Yuan
    • 1
  • Zuocheng Xing
    • 1
  1. 1.Parallel and Distributed Processing LaboratoryNational University of Defense TechnologyChangshaChina

Personalised recommendations